With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.12093-10-6,Ferrocenecarboxaldehyde,as a common compound, the synthetic route is as follows.
(2) Synthesis of ferrocene methanol: ferrocene formaldehyde (10 g, 0.047 muM) dissolved in anhydrous ethyl ether in, and transfer it to the constant pressure in the dropping funnel; in three-neck round bottom flask is added in the tetrahydro (1.8 g, 0 . 047 muM), under the protection of the helium, the ferrocene formaldehyde solution is slowly dripped into stirring in in the tetrahydro solution, then completing after 45 C reflow 2 h, for at the same time thin-layer chromatographic monitoring the reaction; after the reaction, cooling to room temperature, then adding 60 ml ethyl ether, excessive cooling of the tetrahydro adding ethyl acetate and water mixture is removed; separatory funnel for the organic layer is separated out, and washing by water three times (once for each 100 ml water); and organic water-free magnesium sulfate drying 24 h after, for after the Rotavapor distillation under reduced pressure, to obtain yellow powder 7.32 g, yield 97%, melting point 76 – 78 C.
The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.
Reference£º
Patent; Shandong Yuangen Petrochemical Co., Ltd.; Qiao Liang; Yuan Junzhou; Song Laigong; He Jingsong; Liu Shanshan; (7 pag.)CN104710482; (2018); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion