1293-65-8, 1,1′-Dibromoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated
A) Preparation of Intermediates; EXAMPLE A1; Preparation of (Rc,SFc,SP)-1-[2-(1-dimethylaminoethyl)ferrocen-1-yl]phenylphosphino-1′-bromoferrocene of the formula (A1) [Ph=phenyl; Me=methyl]; a) Preparation of 1-phenylchlorophosphino-1′-bromoferrocene (X1); 14.5 ml (23.2 mmol) of n-BuLi (1.6 M in hexane) are added dropwise to a solution of 8 g (23.2 mmol) of 1,1′-dibromoferrocene in 30 ml of THF at a temperature of <-30 C. The mixture is stirred for another 30 minutes at this temperature. It is then cooled to -78 C. and 3.15 ml (23.2 mmol) of phenyldichlorophosphine are added dropwise at such a rate that the temperature does not exceed -60 C. After stirring at -78 C. for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. This gives a suspension of the monochlorophosphine X1.; b) Preparation of 1-bromo-1'-lithioferrocene X5; 4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.43 g (10 mmol) of 1,1'-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of <-30 C. The mixture is stirred at this temperature for another 1.5 hours and subsequently cooled to -78 C. This gives a suspension of 1-bromo-1'-lithioferrocene X5.; Reaction mixture b): In a second reaction flask, 4.0 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.43 g (10 mmol) of 1,1'-dibromo-ferrocene in 10 ml of THF which has cooled to -30 C. at such a rate that the temperature does not exceed -30 C. The mixture is subsequently stirred at -30 C. for a further 1.5 hours and the mixture containing the 1-bromo-1'-lithioferrocene is finally cooled to -78 C.
The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.
Reference£º
Patent; Chen, Weiping; Spindler, Felix; Nettekoven, Ulrike; Pugin, Benoit; US2010/160660; (2010); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion