Analyzing the synthesis route of 102-54-5

The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.102-54-5,Ferrocene,as a common compound, the synthetic route is as follows.

To a three-neck flask, were added10.0 g of dry ferrocene (53.76 mmol) 150 mL of CH2Cl2. Then 39.2 g of triethylorthoformate (264.34) was added dropwise to the mixture with stirring. Afterthe ferrocene was completely dissolved, 30.0 g of mmol anhydrous AlCl3wasslowly added, and the reaction mixture was stirred at room temperature for4 h. Then the reaction was quenched with sodium hydrosulphite saturatedsolution (200 mL) and the mixture was extracted with diethyl ether (200 mL).After concentrated under reduced pressure, the residue was purified by chro-matography on silica gel (petroleum ether:ethyl acetate = 5:1) to afford 7 g redsolid with the yield of 70%.1H NMR (400 MHz, CDCl3) = 4.28 (s, 5H), 4.61 (s,2H); 4.80 (s, 2H), 9.96 (s, 1H).

The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; I?ik, U?ur; Aydemir, Murat; Meric, Nermin; Durap, Feyyaz; Kayan, Cezmi; Temel, Hamdi; Baysal, Akin; Journal of Molecular Catalysis A: Chemical; vol. 379; (2013); p. 225 – 233;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about 1293-65-8

With the rapid development of chemical substances, we look forward to future research findings about 1293-65-8

1,1′-Dibromoferrocene, cas is 1293-65-8, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

General procedure: At 78 C, 1.6M n-butyllithium in hexane (1.25 mL) was addeddropwise to a solution of 1,10-dibromoferrocene (0.69 g, 2.0 mmol)in 10 mL THF. The reaction mixture was stirred at the same temperaturefor 0.5 h before adding 2,2,6,6-tetramethylpiperidine(0.40 mL, 2.2 mmol) dropwise. The reaction mixture was stirredfor 3 h, keeping the temperature below 40 C. A solution of tetramethylthiuramdisulfide (0.48 g, 2.0 mmol) in 20 mL THF wasadded, and the reaction mixture was slowly warmed to roomtemperature. After adding water (5 mL), the reaction mixture wasextracted with dichloromethane (2 x 40 mL). The collected organiclayers were washed with water (2 x 20 mL) and dried with anhydroussodium sulfate. After removing the solvent under reducedpressure, the crude product was purified by column chromatography(alumina, dichloromethane/hexane 3:7) to afford P1 as ayellow solid (0.33 g, 43%).

With the rapid development of chemical substances, we look forward to future research findings about 1293-65-8

Reference£º
Article; Horikoshi, Ryo; Sumitani, Ryo; Mochida, Tomoyuki; Journal of Organometallic Chemistry; vol. 900; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 102-54-5

The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.

102-54-5, Ferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Acetylferrocene was synthesizedaccording to previously reported procedures [49]. Briefly, 85% phosphoric acid (4?mL) was slowly added to a stirred solution of ferrocene (4.0?g, 21.5?mmol) and acetic anhydride (13.3?mL, 140.0?mmol). The mixture was heated in a water bath maintained at 50?C for 10?min and then cooled in ice. Water (25?mL) was added to the mixture, that was then neutralized with NaHCO3 until the end of CO2 formation. CH2Cl2 (50?mL) was added and the orange organic layer was separated and retained in the dark, whereas the brown-coloured aqueous layer washed with a further 20?mL of CH2Cl2. The combined organic fractions were washed twice with water and then dried with anhydrous magnesium sulfate. Crude acetyl ferrocene, obtained removing the solvent under reduced pressure, was purified by silica gel column chromatography using a 95/5 mixture of petroleum ether/ethyl acetate as starting eluent to first separate the unreacted ferrocene. Once the ferrocene was eluted, the eluent was replaced by 100% ethyl acetate to collect acetyl ferrocene, that was then obtained by removing the solvent on a rotary evaporator.

The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Paucar, Rocio; Martin-Escolano, Ruben; Moreno-Viguri, Elsa; Cirauqui, Nuria; Rodrigues, Carlos Rangel; Marin, Clotilde; Sanchez-Moreno, Manuel; Perez-Silanes, Silvia; Ravera, Mauro; Gabano, Elisabetta; European Journal of Medicinal Chemistry; vol. 163; (2019); p. 569 – 582;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about 102-54-5

With the rapid development of chemical substances, we look forward to future research findings about 102-54-5

Ferrocene, cas is 102-54-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

The alcohol 1b was synthesized by acylation offerrocene (Aldrich) with acetic anhydride in presence of BF3Et2O21followed by reduction of the resulting acetylferrocene withNaBH4.22

With the rapid development of chemical substances, we look forward to future research findings about 102-54-5

Reference£º
Article; Trofimov, Boris A.; Oparina, Ludmila A.; Tarasova, Olga A.; Artem’ev, Alexander V.; Kobychev, Vladimir B.; Gatilov, Yuriy V.; Albanov, Alexander I.; Gusarova, Nina K.; Tetrahedron; vol. 70; 35; (2014); p. 5954 – 5960;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about 1287-16-7

With the rapid development of chemical substances, we look forward to future research findings about 1287-16-7

Ferrocenylacetic acid, cas is 1287-16-7, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

With the rapid development of chemical substances, we look forward to future research findings about 1287-16-7

Reference£º
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about Aminoferrocene

With the rapid development of chemical substances, we look forward to future research findings about 1273-82-1

Aminoferrocene, cas is 1273-82-1, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

General procedure: Aminoferrocene (1, 11.0 mg, 0.0547 mmol) was dissolved in 9 cm3 toluene. Formylphenylboronic acid (2, 8.2 mg,0.0547 mmol) was dissolved in 1 cm3 dry ethanol. Both reagent solutions were mixed in an evaporating flask. The solvents were removed under reduced pressure on a rotary vacuum evaporator (the water bath temperature strictly below 40 C) to give [(ferrocenylimino)methyl]phenylboronic acid 3 as a violet/red powder; 18.2 mg (quant.). The products were used as prepared without need of a further purification (Fig. 5).

With the rapid development of chemical substances, we look forward to future research findings about 1273-82-1

Reference£º
Article; Konhefr, Martin; Lacina, Karel; Langmajerova, Monika Skrutkova; Glatz, Zden?k; Skladal, Petr; Mazal, Ctibor; Monatshefte fur Chemie; vol. 148; 11; (2017); p. 1953 – 1958;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about 102-54-5

With the rapid development of chemical substances, we look forward to future research findings about 102-54-5

Ferrocene, cas is 102-54-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

Ferrocene (0.500 g, 2.69 mmol) and acetic anhydride (1.7 mL) were dissolved in acid, phosphoric acid aqueous solution (85% in 0 oC, 0.53 g, were placed 0.30 mL, 4.8 mmol). After heating the reaction mixture under reflux for 15 minutes, it poured into a beaker containing 20 g of ice. After all the ice is melted were placed in a saturated aqueous solution of sodium bicarbonate until air bubbles are no longer generated. The reaction mixture was cooled to 0 dried under reduced pressure gave filtered while washing the resulting solid with water to give a red solid Compound 1b. (0.598 g, 97%).

With the rapid development of chemical substances, we look forward to future research findings about 102-54-5

Reference£º
Patent; Diatech Korea Co. Ltd.; Sogang University Research Foundation; Moon, PongJin; Oh, HaNa; Kang, NaNa; Cheon, AeRan; Park, Gye Shin; Park, Hyeong Soon; Pang, Choo Young; (31 pag.)KR101583811; (2016); B1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about 12093-10-6

With the rapid development of chemical substances, we look forward to future research findings about 12093-10-6

Ferrocenecarboxaldehyde, cas is 12093-10-6, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

General procedure: The ferrocenecarboxaldehyde (2.0mmol) and the acetyl pyridine or amino acetophenone derivatives (2.0mmol) were added to a round bottom flask at rt. Then, a freshly prepared NaOH solution (0.5mmol in 1.0 mL each of H2O and EtOH) was added dropwise and left stirring at rt. When completed, the resulting product was filtered at reduced pressure, washing with cold water. The crude product was then recrystallized as described. Compound 2a: 3-ferrocenyl-1-(2-pyridinyl) prop-2-en-1-one was obtained as dark violet crystals after recrystallization using acetone:H2O mixture. Yield: 0.41g (64%) of pure product. 1H NMR (500MHz, CDCl3): delta=8.73 (s, 1H), 8.18 (d, J=7Hz, 1H), 7.89 (s, 1H), 7.86 (d, J=4Hz, 2H), 7.46 (s, 1H), 4.67 (s, 2H), 4.49 (s, 2H), 4.18 (s, 5H). 13C NMR (125MHz, CDCl3): delta=188.5, 154.7, 148.8, 147.2, 137.0, 126.5, 122.9, 117.8, 79.5, 71.5, 69.9, 69.5. FT-IR (neat) numax (cm-1): 1659 (m), 1591 (m), 1574 (w), 1462 (w), 1396 (m).

With the rapid development of chemical substances, we look forward to future research findings about 12093-10-6

Reference£º
Article; Delgado-Rivera, Sara M.; Perez-Ortiz, Giovanny E.; Molina-Villarino, Andres; Morales-Fontan, Fabiel; Garcia-Santos, Lyannis M.; Gonzalez-Albo, Alma M.; Guadalupe, Ana R.; Montes-Gonzalez, Ingrid; Inorganica Chimica Acta; vol. 468; (2017); p. 245 – 251;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1273-82-1

1273-82-1 Aminoferrocene 72747180, airon-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-82-1,Aminoferrocene,as a common compound, the synthetic route is as follows.

The aminoferrocene compound (300 mg, 1.49 mmol) obtained in Preparation Example 1, 4-bromobiphenyl (380 mg, 1.64 mmol), palladium acetate (Pd(OAc)2, 17 mg, 0.075 mmol), 1,1?-bis(diphenylphosphino)ferrocene (dppf, 67 mg, 0.12 mmol), and sodium tert-butoxide (NaOtBu, 577 mg, 6 mmol) were mixed in toluene (5 ml, as a solvent). A reaction was conducted at 90 C. for 72 hours. The reaction was poured into pure water and was extracted five times with ethyl ether (60 ml). The organic layer thus obtained was dried using anhydrous magnesium sulfate. After the solvent was removed, purification was conducted by column chromatography (eluent: n-butane/ethyl acetate=3/2 (v/v)) to obtain compound BPAFc in the form of an orange solid (yield: 68%). The structure of compound BPAFc is shown in Scheme II.

1273-82-1 Aminoferrocene 72747180, airon-catalyst compound, is more and more widely used in various.

Reference£º
Patent; NATIONAL TSING HUA UNIVERSITY; Cheng, Chien-Hong; Lai, Cheng-Chang; Chang, Yu-Wei; Liao, Chuang-Yi; Huang, Min-Jie; (16 pag.)US9356244; (2016); B1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about 102-54-5

With the rapid development of chemical substances, we look forward to future research findings about 102-54-5

Ferrocene, cas is 102-54-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

A mixture of 5.3g (28mmol) ferrocene and 60mL chloroform was placed in a 50mL three-neck flask and kept at-5 to-10C. Afterward, 10.5mL phosphorus oxychloride dissolved in 15mL DMF was added for 1.5h. The resulting reaction mixture was refluxed for 12h. After solvent removal, the product was poured into 100mL ice water and filtered. The filtrate was neutralized to pH 8-9 using NaOH (10%, w/v) and then extracted with ether. The organic layer was washed with water and dried over anhydrous MgSO4. After removal of the solvent, the crimson solid was recrystallized from n-hexane. The purified product (1) weighed 2.3g (79% yield). 1H NMR(CDCl3): delta, 9.95 (s, 1H, HC=O), 4.79-4.80 (d, 2H, Cp-rings), 4.60-4.61(d, 2H, Cp-rings), 4.28(s, 5H, Cp?-rings). MS(ESI), m/z: 215.0 (M+) FT-IR (KBr): upsilon (cm-1) 1681(C=O).

With the rapid development of chemical substances, we look forward to future research findings about 102-54-5

Reference£º
Article; Jia, Jianhong; Cui, Yanhong; Li, Yujin; Sheng, Weijian; Han, Liang; Gao, Jianrong; Dyes and Pigments; vol. 98; 2; (2013); p. 273 – 279;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion