Analyzing the synthesis route of 1273-82-1

The synthetic route of 1273-82-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-82-1,Aminoferrocene,as a common compound, the synthetic route is as follows.,1273-82-1

To a mixture of methyl4-chloro-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (100 mg, 0.410 mmoL), ferrocenylamine(114 mg, 0.410 mmoL), and p-toluenesulfonic acid monohydrate (15 mg, 0.082 mmoL) was addedanhydrous 1,4-dioxane (1 mL) under an argon atmosphere. The resulting mixture was heated to 150 Cunder microwave irradiation and stirred for 30 min. The resulting mixture was concentrated underreduced pressure. The resulting residue was purified by column chromatography (n-hexane/ethylacetate, 100:00¡À40:60). The appropriate fractions were combined and concentrated under reducedpressure to give methyl-5-methyl-4-(ferrocenylamino)thieno[2,3-d]pyrimidine-6-carboxylate (2) asan orange solid (105 mg, 63%). 1H NMR (d6-DMSO, 500 MHz): = 8.53 (1H, s), 8.02 (1H, s),4.82 (2H, s), 4.16 (5H, s), 4.07 (2H, s), 3.84 (3H, s), 3.02 (3H, s). 13C NMR (d6-DMSO, 126 MHz): = 171.0, 153.5, 130.1, 125.4, 125.3, 124.3, 124.1, 96.1, 79.8, 69.2, 64.1, 61.1, 36.2, 28.7. HRMS-ESI (m/z):calc. for [C19H17FeN3O2S + H]+ = 407.2712, observed = 407.2716. Anal. Calc. (%) for C19H17FeN3O2S:C, 56.03; H, 4.21; N, 10.32. Found (%): C, 55.97; H, 4.19; N, 10.21.

The synthetic route of 1273-82-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Sansook, Supojjanee; Lineham, Ella; Hassell-Hart, Storm; Tizzard, Graham J.; Coles, Simon J.; Spencer, John; Morley, Simon J.; Molecules; vol. 23; 9; (2018);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion