Analyzing the synthesis route of 102-54-5

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocene,102-54-5,Molecular formula: C10Fe,mainly used in chemical industry, its synthesis route is as follows.,102-54-5

To a solution of ferrocene (1; 5.00 g, 26.87 mmol) in anhydrous CH 2 Cl 2(30 mL), a solution of acetyl chloride (2.01 mL, 28.21 mmol) and AlCl 3(3.94 g, 29.55 mmol) in anhydrous CH 2 Cl 2 (40 mL) was added at 0 C.The reaction temperature was allowed to rise to r.t., and the dark-vio-let solution was stirred for 2 h. The reaction was quenched by addi-tion of ice-cold water (70 mL) at 0 C and the mixture was extractedwith CH 2 Cl 2 (3 ¡Á 70 mL). The collected organic layers were washedwith a solution of Na 2 CO 3 (50 mL), dried over Na 2 SO 4 , filtrated and thesolvent was removed under reduced pressure. Crude product (dark-orange solid) was purified by chromatography on SiO 2 (hexanes/EtOAc = 4:1; R f = 0.3) to afford target product 2.Yield: 4.45 g (73%); orange solid; mp 85-86 C (lit. 20 85-86 C).1 H NMR (300 MHz, CDCl 3 ): delta = 4.78-4.76 (m, 2 H), 4.55-4.42 (m, 2 H),4.20 (s, 5 H), 2.40 (s, 3 H).NMR spectra are in agreement with those of the commercially avail-able product.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocene,belong iron-catalyst compound

Reference£º
Article; Plevova, Kristina; Mudrakova, Brigita; ?ebesta, Radovan; Synthesis; vol. 50; 4; (2018); p. 760 – 763;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 102-54-5

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocene,102-54-5,Molecular formula: C10Fe,mainly used in chemical industry, its synthesis route is as follows.,102-54-5

General procedure: An oven-dried vial was charged with anisole 1a (0.75 mmol, 1.0 equiv), acetic anhydride 2a (1.5 mmol, 2.0 equiv) and TFA (0.8 mL). The reaction mixture was stirred at room temperature and monitored by TLC or GC-MS. The reaction typically took 1.5 h to complete. Upon completion, aqueous sodium hydrogen carbonate was added and the aqueous phase was extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over Na2SO4 and concentrated. The crude product was purified by silica gel column chromatography to afford ketone product 3a. Alternatively, the product can also be obtained without workup: upon completion, the solvent was removed under reduced pressure and the residue was subjected to silica gel flash column chromatography.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocene,belong iron-catalyst compound

Reference£º
Article; Liu, Guangchang; Xu, Bo; Tetrahedron Letters; vol. 59; 10; (2018); p. 869 – 872;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 102-54-5

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocene,102-54-5,Molecular formula: C10Fe,mainly used in chemical industry, its synthesis route is as follows.,102-54-5

General procedure: A solution of acyl chloride (53.76 mmol) in 25 ml drydichloromethane was added to a suspension of anhydrousaluminum chloride (7.7 g, 53.76 mmol) in 25 ml drydichloromethane and the mixturewas stirred at 5 C for 1 hunder argon. The solution of aluminum chloride/acyl chloridecomplexwas added dropwise for 30 min to a solution offerrocene (10 g, 53.76 mmol) in 130ml dry dichloromethaneat 0 C. The reaction mixture was warmed to room temperatureand stirred for 16 h. A solution of NaBH4 (2.29 g,53.76 mmol) in 25 ml diglyme was added dropwise to thepurple reaction mixture at 5 C to form an orange solutionas the result which was stirred for an hour in 0 C. Themixture was hydrolyzed with water while maintaining itstemperature at less than or equal to 10 C. The mixture wasallowed to separate by settling and the organic phase wasthen withdrawn. The aqueous phase was extracted 3 timeswith 30 ml of CH2Cl2 and then all the organic phases werecombined,washed with 50 ml of brine, CH2Cl2was removedand the diglyme and the residual ferrocene which wasfound to be entrained by the diglyme, were distilled atreduced pressure of approximately 20 mm Hg at a columnhead temperature of 85 Ce95 C. The alkylferrocene derivativeswere distilled, at less than 5mmHg. Specific detailsare given for each compound.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocene,belong iron-catalyst compound

Reference£º
Article; Teimuri-Mofrad, Reza; Mirzaei, Farzaneh; Abbasi, Hassan; D. Safa, Kazem; Comptes Rendus Chimie; vol. 20; 2; (2017); p. 197 – 205;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 102-54-5

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocene,102-54-5,Molecular formula: C10Fe,mainly used in chemical industry, its synthesis route is as follows.,102-54-5

Under a nitrogen atmosphere, ferrocene (10 g, 53.8 mmol) was dissolved in anhydrous n-hexane (50 ml), followed by adding and mixing with tetramethylethylenediamine (TMEDA, 18.1 ml, 84.5 mmol) A solution of n-butyllithium (n-BuLi) in n-hexane (2.5 M, 48.0 ml) was added slowly dropwise at 0 C., followed by stirring at 25 C. After stirring for 12 hours and removing the solvent, a light orange yellow complex was formed. The complex was added to anhydrous ethyl ether (200 ml), followed by stirring to disperse the complex in anhydrous ethyl ether and lowering the temperature of the dispersion to -78 C. A solution of iodine (19.0 g) in ethyl ether (350 ml) was added to the dispersion slowly dropwise, and the temperature was raised to 25 C. After stirring for a further hour, the reaction was poured into an aqueous ferric chloride (FeCl3) solution (5 wt %, 100 ml), followed by extraction with ethyl ether (200 ml). An organic layer thus obtained was washed ten times with an aqueous ferric chloride (FeCl3) solution (5 wt %, 100 ml) and then was washed with water until the aqueous layer was clear. Thereafter, water was removed using anhydrous MgSO4 and solvent was also removed to obtain a mixture in the form of a blackish brown liquid of compound a and compound b as shown in scheme I in a molar ratio of 1:1. (0037) The obtained mixture (2.5 g, 6.67 mmol), cuprous iodide (CuI, 128 mg, 0.67 mmol), ferric chloride (FeCl3, 107 mg, 0.67 mmol), sodium hydroxide (NaOH, 540 mg, 13.3 mmol), aqueous ammonia (15 M, 30 ml), and ethanol (EtOH, 30 ml) were placed in a high pressure reaction tube of 150 ml. A reaction was conducted at 90 C. for 12 hours. After the temperature of the content in the reaction dropped to 25 C., ethyl ether (200 ml) was added and the content in the reaction tube was washed three times with an aqueous sodium hydroxide solution (1.0 M, 150 ml). Then, water was removed using anhydrous MgSO4 and solvent was also removed to obtain an orange brown crude product, which was purified by column chromatography (eluent: ethyl acetate/n-hexane=1/2 (v/v)) to obtain aminoferrocene compound c shown in Scheme I in the form of a yellowish brown solid (yield: 48%). (0038) 1H NMR (400 MHz, CDCl3) of aminoferrocene compound c: delta 4.08 (s, 5H), 3.97 (t, J=1.6, 2H), 3.82 (t, J=1.6, 2H), 2.58 (br, 2H).

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocene,belong iron-catalyst compound

Reference£º
Patent; NATIONAL TSING HUA UNIVERSITY; Cheng, Chien-Hong; Lai, Cheng-Chang; Chang, Yu-Wei; Liao, Chuang-Yi; Huang, Min-Jie; (16 pag.)US9356244; (2016); B1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 12093-10-6

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxaldehyde,belong iron-catalyst compound

Ferrocenecarboxaldehyde, cas is 12093-10-6, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,12093-10-6

Ferrocene carboxyl aldehyde (0.100 g, 0.467 mmol) was dissolved in ethanol (8 mL), was added slowly in small portions sodium borohydride (0.090 g, 2.4mmol) at 0 . The reaction mixture was stirred at ambient temperature for 3 hours. It was add water (3mL) and dichloromethane (10 mL) in turn to complete the reaction.The organic layer was separated and the remaining water layer was extracted three times with dichloromethane (15mL x 3). The combined organic layer is washed with a saturated aqueous sodium chloride solution, placed into the over anhydrous sodium sulfate, filtered under reduced pressure. After removal of all the solvent in the filtrate under reduced pressure was purified by column chromatography (hexane: ethyl acetate: methanol = 15: 5: 1) to give the compound 2a to give a yellow solid. (0.090 g, 89%)

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxaldehyde,belong iron-catalyst compound

Reference£º
Patent; Diatech Korea Co. Ltd.; Sogang University Research Foundation; Moon, PongJin; Oh, HaNa; Kang, NaNa; Cheon, AeRan; Park, Gye Shin; Park, Hyeong Soon; Pang, Choo Young; (31 pag.)KR101583811; (2016); B1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 12093-10-6

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxaldehyde,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenecarboxaldehyde,12093-10-6,Molecular formula: C11H10FeO,mainly used in chemical industry, its synthesis route is as follows.,12093-10-6

General procedure: (i-Pr-Pybox)ZnCl2 (2b) (10.9 mg, 0.025 mM, 0.1 equiv) was added in H2O (0.5 mL), thenferrocenecarboxaldehyde (53.4 mg, 0.25 mM, 1.0 equiv) and activated methylene compound(0.5 mM, 2.0 equiv) were added. The mixture was stirred at room temperature forfew minutes, after which the crude reaction mixture was loaded directly onto a column ofsilica gel and purified by column chromatography to give the solid.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxaldehyde,belong iron-catalyst compound

Reference£º
Article; Jia, Wei-Guo; Li, Dan-Dan; Zhang, Hui; Dai, Yuan-Chen; Sheng, En-Hong; Journal of Coordination Chemistry; vol. 68; 2; (2015); p. 220 – 228;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 12093-10-6

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxaldehyde,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenecarboxaldehyde,12093-10-6,Molecular formula: C11H10FeO,mainly used in chemical industry, its synthesis route is as follows.,12093-10-6

An ethanolic solution (10 ml) of ferrocenyl carboxyaldehyde (21 mg, 0.1 mmol) was taken in a round bottomed flask and acetyl cymantrene (28 mg, 0.1 mmol) was added under stirring condition. Two equivalents of sodium hydroxide in ethanol solution was then added to the reaction mixture and stirring was continued at room temperature under inert atmosphere for 3 h. The reaction was continuously monitored by TLC and on completion of the reaction the solution was dried under vacuum and the residue was dissolved in dichloromethane solvent and subjected to chromatographic work-up using column chromatography. Elution with dichloromethane/hexane (30:70 v/v) solvent mixture separated the following compounds in the order of elution: [(CO)3Mn(eta5-C5H4)COCH3], [(eta5-C5H5)Fe(eta5-C5H4CHO)] and violet colored compound [(eta5-C5H4)Mn(CO)3COCH=CH(eta5-C5H4)Fe(eta5-C5H5)] (1). {Yield: 32 mg (73%)} 1: Anal. calcd. (found): C, 57.01 (57.23); H, 3.39 (3.34). IR(nuCO, cm-1,CH2Cl2) 2022.8 (vs), 1937 (vs br), 1653 (s), 1586 (s). 1H NMR (delta, CDCl3): 4.2 (s, eta5-C5H5, 5H), 4.52 (t, eta5-C5H4, 2H), 4.6 (t, eta5-C5H4, 2H), 4.9 (t, eta5-C5H4, 2H), 5.55 (t, eta5-C5H4, 2H), 6.58 (d, J = 15 Hz, CH=, 1H), 7.78 (d, J = 15 Hz, =CH, 1H). 13C NMR (delta, CDCl3): 69.16 (eta5-C5H5), 69.95 (eta5-C5H4), 71.66 (eta5-C5H4), 78.47 (eta5-C5H4), 83.61 (eta5-C5H4), 86.59 (eta5-C5H4), 93.78 (eta5-C5H4), 117.41 (=CH), 146.38 (=CH), 185.29 (-C=O). UV-Vis. (lambda (nm), CH2Cl2) = 321, 384, 502. MS (ESI): m/z 443 (M + 1)+.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxaldehyde,belong iron-catalyst compound

Reference£º
Article; Mishra, Sasmita; Tirkey, Vijaylakshmi; Ghosh, Avishek; Dash, Hirak R.; Das, Surajit; Shukla, Madhulata; Saha, Satyen; Mobin, Sheikh M.; Chatterjee, Saurav; Journal of Molecular Structure; vol. 1085; (2015); p. 162 – 172;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of Ferrocenylacetic acid

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenylacetic acid,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO21,mainly used in chemical industry, its synthesis route is as follows.,1287-16-7

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenylacetic acid,belong iron-catalyst compound

Reference£º
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1287-16-7

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenylacetic acid,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenylacetic acid,1287-16-7,Molecular formula: C12H3FeO2,mainly used in chemical industry, its synthesis route is as follows.,1287-16-7

1)1 mmol of ferrocenyl acetic acid and 1 mmol of 3-phenyl-4-amino-3-mercapto-1,2,4-oxadiazole were added,Added to a dry 250mL single-necked flask,Then 0.1 mmol p-toluenesulfonic acid,Then 5 mL of DMF was added thereto,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,350W under irradiation once every 30s,The duration of irradiation is 3min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,The crude product of 3-phenyl-6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,Using a solvent of DMF and absolute ethanol in a volume ratio of 2: 1 mixed solvent,The crude product was recrystallized to give a brown solid,The yield is 81%

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenylacetic acid,belong iron-catalyst compound

Reference£º
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Meso-5,10,15,20-Tetraphenyl-21H,23H-porphineironu-oxodimer

With the synthetic route has been constantly updated, we look forward to future research findings about Meso-5,10,15,20-Tetraphenyl-21H,23H-porphineironu-oxodimer,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO267,mainly used in chemical industry, its synthesis route is as follows.,12582-61-5

To a CH2Cl2 solution (15 mL) of [(TPP)Fe]2(mu-O) (0.033 g, 0.024 mmol) was added trichloroacetic acid (0.010 g, 0.06 mmol). The mixture was stirred for 45 min, during which time the color of the solution changed from green to brown. The solvent was reduced to ?3 mL and hexane (10 mL) was added. The solution was slowly concentrated under reduced pressure until precipitation of the product occurred. The dark brown precipitate was collected by filtration, washed with hexane (2 ¡Á 15 mL), and dried in vacuo to give (TPP)Fe(OC(=O)CCl3) (0.020 g, 0.024 mmol, 50% isolated yield). Slow evaporation of a CH2Cl2/cyclohexane (1:1 ratio; 4 mL) solution of the product at room temperature gave suitable crystals for X-ray diffraction studies. IR (CH2Cl2, cm-1): upsilonOCO(asym) = 1704. IR (KBr, cm-1): upsilonOCO(asym) = 1709. UV-vis (lambda (relative epsilon, mM-1cm-1), 2 ¡Á 10-5 M in CH2Cl2): 411 (138), 509 (14), 571 (8), 681 (4) nm.

With the synthetic route has been constantly updated, we look forward to future research findings about Meso-5,10,15,20-Tetraphenyl-21H,23H-porphineironu-oxodimer,belong iron-catalyst compound

Reference£º
Article; Xu, Nan; Yan, Beiqi; Awasabisah, Dennis; Powell, Douglas R.; Richter-Addo, George B.; Inorganica Chimica Acta; vol. 469; (2018); p. 183 – 188;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion