Downstream synthetic route of Ferrocenylacetic acid

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenylacetic acid,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO153,mainly used in chemical industry, its synthesis route is as follows.,1287-16-7

1) 1.2 mmol of ferrocenyl acetic acid and 1 mmol of 3- (2,4-dichlorophenyl) -4-amino-5-mercapto-1,2,4-triazole were weighed out,Added to a dry 250mL single-necked flask,Then p-toluenesulfonic acid 0.12 mmol,7 mL of DMF was further added thereto,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,370W under irradiation once every 30s,Irradiation duration of 4min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,Thus, 3- (2,4-dichlorophenyl) -6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained product,Using a solvent of DMF and absolute ethanol in a volume ratio of 4: 1 mixed solvent,The crude product was recrystallized,That is, a brown solid,The yield is 82%

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenylacetic acid,belong iron-catalyst compound

Reference£º
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1273-82-1

With the complex challenges of chemical substances, we look forward to future research findings about Aminoferrocene

Name is Aminoferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1273-82-1, its synthesis route is as follows.,1273-82-1

This amino-ferrocene (1.07 g, 5.32 mmol) was dissolved in acetic acid (15 ml.) under nitrogen and paraformaldehyde (1.59 g, 53.2 mmol) and NaBH3CN (1.67 g, 26.6 mmol) was added and the reaction mixture was stirred for 16 h. Aqueous NaOH 6 M was added until pH = 12 and the solution was extracted by hexane (3 x 20 ml_). The combined organic phase was washed with brine, dried with Na2S04 and the solvent was removed under vacuum until approximately 5% of the initial volume. The residue was subjected to quick filtration through a pad of silica gel eluting with hexane. The solvent was removed under vacuum not to complete dryness so as the pure product crystallized in the freezer as orange flakes; mp 69- 70 C; NMR (CDCI3, ppm): 1H (500 MHz) 4.25, 3.95, 3.76, 2.59; 13C (126 MHz) 155.80, 66.50, 63.07, 54.61 , 41.50.

With the complex challenges of chemical substances, we look forward to future research findings about Aminoferrocene

Reference£º
Patent; NATIONAL CENTRE FOR SCIENTIFIC RESEARCH “DEMOKRITOS”; PELECANOU ZAMPARA, Maria; SAGNOU, Marina; PAPADOPOULOS, Minas; PIRMETTIS, Ioannis; MAVROIDI, Barbara; SHEGANI, Antonio; (38 pag.)WO2019/180200; (2019); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 12126-50-0

With the synthetic route has been constantly updated, we look forward to future research findings about Bis(pentamethylcyclopentadienyl)iron(II),belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Bis(pentamethylcyclopentadienyl)iron(II),12126-50-0,Molecular formula: C20H30Fe,mainly used in chemical industry, its synthesis route is as follows.,12126-50-0

Salt 1 was synthesized as follows. Under a nitrogen atmosphere,SO2Cl2 (0.025 mL, 0.31 mmol) was added dropwise to a dichloromethanesolution (0.5 mL) of [FeCp*2] (48 mg, 0.15 mmol) andstirred for 15 min. The solvent was then evaporated under reducedpressure and vacuum dried. The resulting dark green solid of[FeCp*2]Cl was dissolved in water (0.5 mL), to which an aqueoussolution (0.2 mL) of K [CH2BrBF3] (54 mg, 0.27 mmol) was added and stirred for 15 min. The resulting precipitate was collected by filtration and washed with ether, followed by drying under vacuumto obtain the desired product as a dark green solid. Recrystallizationby slow cooling (-40 C) of an ether-dichloromethane solution ofthe solid afforded dark green block crystals of 1 (31.5 mg, yield 43%). Anal. Calcd. For C21H32F3BBrFe: C, 51.68; H, 6.65; N, 0.00.Found: C, 51.88; H, 7.05; N, 0.00. IR (cm-1): 2949, 1474, 1424, 1381,1186, 1124, 1104, 1081, 1043, 1025, 996, 968, 954, 742, 722, 619, 593,531.

With the synthetic route has been constantly updated, we look forward to future research findings about Bis(pentamethylcyclopentadienyl)iron(II),belong iron-catalyst compound

Reference£º
Article; Kimata, Hironori; Mochida, Tomoyuki; Journal of Organometallic Chemistry; vol. 895; (2019); p. 23 – 27;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenecarboxaldehyde

With the complex challenges of chemical substances, we look forward to future research findings about 12093-10-6,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxaldehyde, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

(2) Synthesis of ferrocene methanol: ferrocene formaldehyde (10 g, 0.047 muM) dissolved in anhydrous ethyl ether in, and transfer it to the constant pressure in the dropping funnel; in three-neck round bottom flask is added in the tetrahydro (1.8 g, 0 . 047 muM), under the protection of the helium, the ferrocene formaldehyde solution is slowly dripped into stirring in in the tetrahydro solution, then completing after 45 C reflow 2 h, for at the same time thin-layer chromatographic monitoring the reaction; after the reaction, cooling to room temperature, then adding 60 ml ethyl ether, excessive cooling of the tetrahydro adding ethyl acetate and water mixture is removed; separatory funnel for the organic layer is separated out, and washing by water three times (once for each 100 ml water); and organic water-free magnesium sulfate drying 24 h after, for after the Rotavapor distillation under reduced pressure, to obtain yellow powder 7.32 g, yield 97%, melting point 76 – 78 C.

With the complex challenges of chemical substances, we look forward to future research findings about 12093-10-6,belong iron-catalyst compound

Reference£º
Patent; Shandong Yuangen Petrochemical Co., Ltd.; Qiao Liang; Yuan Junzhou; Song Laigong; He Jingsong; Liu Shanshan; (7 pag.)CN104710482; (2018); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1273-82-1

With the complex challenges of chemical substances, we look forward to future research findings about Aminoferrocene

Name is Aminoferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1273-82-1, its synthesis route is as follows.,1273-82-1

General procedure: Organometallic sulfonamides were prepared following a modification of the procedure described by Alberto and co-workers [41]. An equimolar amount of pyridine was added at room temperature to a solution containing 50mg of P2 or P3 in 7.0mL of anhydrous CH2Cl2. After 15min, the corresponding sulfonyl chloride derivative was added, and the reaction mixture was heated under reflux for 24h. The resulting solution was dried under vacuum. The crude product was purified using silica gel liquid chromatography and a mixture of CH2Cl2/hexane (4:1) as the eluent. All compounds were recrystallized from an acetone/hexane (1:5) mixture by slow evaporation.

With the complex challenges of chemical substances, we look forward to future research findings about Aminoferrocene

Reference£º
Article; Quintana, Cristobal; Silva, Gisella; Klahn, A. Hugo; Artigas, Vania; Fuentealba, Mauricio; Biot, Christophe; Halloum, Iman; Kremer, Laurent; Novoa, Nestor; Arancibia, Rodrigo; Polyhedron; vol. 134; (2017); p. 166 – 172;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Application of 1287-16-7

As the rapid development of chemical substances, we look forward to future research findings about 1287-16-7

A common heterocyclic compound, the iron-catalyst compound, name is Ferrocenylacetic acid,cas is 1287-16-7, mainly used in chemical industry, its synthesis route is as follows.

In a 50mL three neck round bottom flask, ferroceneacetic acid (0.0600g, 0.25mmol), oxalyl chloride (21.8muL, 0.25mmol), pyridine (20.1muL, 0.25mmol) and 4-(1H-pyrrol-1yl)phenol (0.0398g, 0.25mmol) were reacted in 10mL of dichloromethane (DCM) under nitrogen atmosphere at room temperature. The reaction was carried out for 12h to get 4(1H-pyrrol-1-yl)phenyl ferroceneacetylate. After that period three consecutive washing with 0.01M HCl were carried out. The organic phase was then dried over sodium sulfate. The product was separated by column chromatography using silica gel and DCM as mobile phase. Fc-CH2CO2-Ph-4-Py was isolated in 62% yield., 1287-16-7

As the rapid development of chemical substances, we look forward to future research findings about 1287-16-7

Reference£º
Article; Perez, Wanda I.; Soto, Yarelys; Ortiz, Carmen; Matta, Jaime; Melendez, Enrique; Bioorganic and Medicinal Chemistry; vol. 23; 3; (2015); p. 471 – 479;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Application of 1,2-Thiazinane 1,1-dioxide

As the rapid development of chemical substances, we look forward to future research findings about 1293-65-8

A common heterocyclic compound, the iron-catalyst compound, name is 1,1′-Dibromoferrocene,cas is 1293-65-8, mainly used in chemical industry, its synthesis route is as follows.

In a Schlenk flask (10 mL) equipped with a magnetic stir bar, 1,1′-dibromoferrocene (120 mg, 34.9 mumol) and THF (0.53 mL) were placed. A pentane solution of t-BuLi (0.88 mL, 1.6 M, 1.4 mmol) was dropwise added to the solution at -50 C and the resulting mixture was stirred at below -30 C for 1 h. Then, a THF suspension (3.5 mL) of compound 4 (448 mg, 704 mumol) was added to the resulting yellow suspension at -50 C and stirred at ambient temperature. After 0.5 h, the reaction mixture was quenched with water and the crude mixture was extracted with hexane. The organic layer was dried over anhydrous sodium sulfate. After removal of the resulting salt by filtration and the solvent in vacuo, the residue was subjected to silica gel column chromatography (eluent: hexane) and gel permeation chromatography (eluent: toluene). Recrystallization from hexane gave the title compound (50.8 mg, 39.2 mumol, 11%) as yellow crystals., 1293-65-8

As the rapid development of chemical substances, we look forward to future research findings about 1293-65-8

Reference£º
Article; Kishimoto, Yusuke; Ishida, Shintaro; Iwamoto, Takeaki; Chemistry Letters; vol. 45; 2; (2016); p. 235 – 237;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1287-16-7

With the rapid development of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

Ferrocenylacetic acid, cas is 1287-16-7, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1287-16-7

Under ice cooling, 0.57 mL (4 mmols) of triethylamine was added to a mixture of 0.5 g (2 mmols) of ferroceneacetic acid (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 0.44 mL (2 mmols) of diphenylphosphyrylazide and 4 mL of toluene. The mixture was stirred at room temperature for 30 minutes. The reaction mixture was diluted with dichloromethane. The dilution was washed sequentially with a 1% hydrochloric acid aqueous solution and saturated sodium hydrogencarbonate solution. After drying over anhydrous magnesium sulfate, the organic layer was filtered and concentrated under reduced pressure to give 4 mL of the toluene solution. To the toluene solution obtained, 2 mL of toluene was added and 0.32 g (3 mmols) of ethyl carbazate was added to the mixture while stirring at room temperature. The mixture was then heated under reflux for 3 hours and diluted with dichloromethane. The dilution was washed sequentially with a 1% hydrochloric acid aqueous solution and saturated sodium hydrogencarbonate solution. After drying over anhydrous magnesium sulfate, the organic layer was filtered and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (chloroform : methanol = 20:1) to give 0.55 g (78%) of ethyl 3-(ferrocenylmethyl)carbamoylcarbazate as a yellow oily substance. 1H NMR (CDCl3) delta: 1.27 (3H, t, J=7.3 Hz), 4.0-4.3 (13H, m), 5.59 (1H, m), 6.59 (1H, s), 6.66 (1H, s)

With the rapid development of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

Reference£º
Patent; CHUGAI SEIYAKU KABUSHIKI KAISHA; EP1533316; (2005); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of Aminoferrocene

1273-82-1 is used more and more widely, we look forward to future research findings about Aminoferrocene

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Aminoferrocene, and cas is 1273-82-1, its synthesis route is as follows.,1273-82-1

A mixture of 300 mg (1.5 mmol) of the amine ferrocene obtained in Preparation Example 1, 1.8 g (4.5 mmol) of 4′-bromo-N, N-diphenylbiphenyl-4-amine (4′-bromo- -diphenylbiphenyl-4-amine),17 mg (0.075 mmol) of palladium acetate [Pd (OAc) 2]0.1 mL of a 10 wt% tributylphosphine n-hexane solution and 1.13 g (11.8 mmol) of sodium tert-butoxide(NaOtBu)And with 6 mL of toluene as solvent,After reacting at 130 C for 72 hours,The palladium catalyst was first removed by filtration through diatomaceous earth and silica gel,And rinsed with ethyl acetate to remove the solvent,And finally purified by column chromatography [4: 1 to 3: 2 (v / v) n-hexane and ethyl acetate gradient stripping system]To obtain the compound DPABPAFc (yield 50%The structure is shown in Reaction Scheme III).

1273-82-1 is used more and more widely, we look forward to future research findings about Aminoferrocene

Reference£º
Patent; Zheng, Jianhong; Lai, Zhenchang; Zhang, Yuwei; Liao, Chunyi; Huang, Minjie; (31 pag.)CN106317129; (2017); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1293-65-8

With the synthetic route has been constantly updated, we look forward to future research findings about 1,1′-Dibromoferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,1,1′-Dibromoferrocene,1293-65-8,Molecular formula: C10Br2Fe,mainly used in chemical industry, its synthesis route is as follows.,1293-65-8

120 ml (0.3 mol) of n-BuLi (2.5 M in hexane) are added dropwise at a temperature of <-30C to a solution of 103 g (0.3 mol) of 1 ,1 '-dibromoferrocene in 300 ml of THF. The mixture is stirred further at this temperature for 1.5 hours. The mixture is then cooled to -500C, and 66.2 ml (0.3 mol) of dicyclohexylphosphine chloride are slowly added dropwise at such a rate that the temperature does not rise above -45C. After stirring for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. After adding 150 ml of water, the reaction mixture is extracted by shaking with hexane. The organic phases are dried over sodium sulphate, and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is crystallized in ethanol. The product 13 is obtained with a yield of 84% (yellow solid). 1H NMR (300 MHz, C6D6): delta 1.20-2.11 (m, 22H), 3.97 (m, 2H), 4.23 (m, 2H), 4.26 (m, 2H), 4.41 (m, 2H). 31P NMR (121.5 MHz, C6D6): delta -8.3 (s). With the synthetic route has been constantly updated, we look forward to future research findings about 1,1'-Dibromoferrocene,belong iron-catalyst compound Reference£º
Patent; Solvias AG; WO2007/135179; (2007); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion