Extracurricular laboratory: Synthetic route of 1287-16-7

As the rapid development of chemical substances, we look forward to future research findings about 1287-16-7

Ferrocenylacetic acid, cas is 1287-16-7, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

1) Weigh 1.2mmol ferrocenyl acetic acid and3-H-4-amino-5-mercapto-1,2,4-triazole 1 mmol,Added to a dry 250mL single-necked flask,Then p-toluenesulfonic acid 0.13 mmol,Then 6 mL of DMF was added thereto,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,350W under irradiation once every 30s,The duration of irradiation is 3min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,The crude product of 3-hydro-6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,With 80% aqueous ethanol recrystallization,A brown solid,The yield is 82%, 1287-16-7

As the rapid development of chemical substances, we look forward to future research findings about 1287-16-7

Reference£º
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 12093-10-6

As the rapid development of chemical substances, we look forward to future research findings about 12093-10-6

Ferrocenecarboxaldehyde, cas is 12093-10-6, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

General procedure: To a solution of acetophenone derivative (1 equiv.) in dry THF (4 mL/mmol) was added sodium hydride (4 equiv.). The resulting mixture was stirred at 25 C for 30 min and ferrocene carboxaldehyde (1.5 equiv.) was added in dry THF (4 mL/mmol) and the mixture was stirred at 25 C for 4-8 h. After the disappearance of the starting material on TLC, the solution was poured into 1M hydrochloric acid and extracted with CH2Cl2. The combined organic layers were washed with water, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure., 12093-10-6

As the rapid development of chemical substances, we look forward to future research findings about 12093-10-6

Reference£º
Article; Peres, Basile; Nasr, Rachad; Zarioh, Malik; Lecerf-Schmidt, Florine; Di Pietro, Attilio; Baubichon-Cortay, Helene; Boumendjel, Ahcene; European Journal of Medicinal Chemistry; vol. 130; (2017); p. 346 – 353;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1273-82-1

As the rapid development of chemical substances, we look forward to future research findings about 1273-82-1

Aminoferrocene, cas is 1273-82-1, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

General procedure: Ferrocenylamine (1 eq.) and 5-bromo-4-nitro-2-furaldehyde (4-NO2) (1 eq.) were dissolved in dry toluene (15 mL) and refluxed for 6 h under a nitrogen atmosphere. After this time, the solvent wasremoved under vacuum. The solid obtained contains a mixture of imine (1a) and amine (1b) (by TLC and 1H NMR). These complexes were separated by column chromatography on silica gel usingCH2Cl2 as the eluent. The first (red) band contained complex 1b,and the second (purple) band contained complex 1a. Finally, bothsolids obtained after solvent evaporation were purified by crystallizationfrom CH2Cl2/hexane (1:5) at 18 C., 1273-82-1

As the rapid development of chemical substances, we look forward to future research findings about 1273-82-1

Reference£º
Article; Toro, Patricia M.; Acuna, Alejandra; Mallea, Mario; Lapier, Michel; Moncada-Basualto, Mauricio; Cisterna, Jonathan; Brito, Ivan; Klahn, Hugo; Journal of Organometallic Chemistry; vol. 901; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 12093-10-6

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.12093-10-6,Ferrocenecarboxaldehyde,as a common compound, the synthetic route is as follows.,12093-10-6

General procedure: The ferrocenecarboxaldehyde (2.0mmol) and the acetyl pyridine or amino acetophenone derivatives (2.0mmol) were added to a round bottom flask at rt. Then, a freshly prepared NaOH solution (0.5mmol in 1.0 mL each of H2O and EtOH) was added dropwise and left stirring at rt. When completed, the resulting product was filtered at reduced pressure, washing with cold water. The crude product was then recrystallized as described. Compound 2a: 3-ferrocenyl-1-(2-pyridinyl) prop-2-en-1-one was obtained as dark violet crystals after recrystallization using acetone:H2O mixture. Yield: 0.41g (64%) of pure product. 1H NMR (500MHz, CDCl3): delta=8.73 (s, 1H), 8.18 (d, J=7Hz, 1H), 7.89 (s, 1H), 7.86 (d, J=4Hz, 2H), 7.46 (s, 1H), 4.67 (s, 2H), 4.49 (s, 2H), 4.18 (s, 5H). 13C NMR (125MHz, CDCl3): delta=188.5, 154.7, 148.8, 147.2, 137.0, 126.5, 122.9, 117.8, 79.5, 71.5, 69.9, 69.5. FT-IR (neat) numax (cm-1): 1659 (m), 1591 (m), 1574 (w), 1462 (w), 1396 (m).

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Delgado-Rivera, Sara M.; Perez-Ortiz, Giovanny E.; Molina-Villarino, Andres; Morales-Fontan, Fabiel; Garcia-Santos, Lyannis M.; Gonzalez-Albo, Alma M.; Guadalupe, Ana R.; Montes-Gonzalez, Ingrid; Inorganica Chimica Acta; vol. 468; (2017); p. 245 – 251;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

1293-65-8, 1,1′-Dibromoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

1293-65-8, General procedure: In a Schlenk tube CuI (1.2 mg, 6.3 mumol, 5 mol. %), the respective ligand (10-15 mol. %), the respective ferrocenyl halide (0.125 mmol), the respective phenol (0.25-0.35mmol), and a base (0.25 mmol) were dissolved in toluene (7.5 mL), and the reaction mixture was stirred at 110C for a given time (26-60 h). After evaporation of the volatiles the crude products were purified by column chromatography in cyclohexane-ethyl acetate.

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Frey, Guido D.; Hoffmann, Stephan D.; Zeitschrift fur Naturforschung – Section B Journal of Chemical Sciences; vol. 70; 1; (2015); p. 65 – 70;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 102-54-5

The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.102-54-5,Ferrocene,as a common compound, the synthetic route is as follows.,102-54-5

General procedure: A solution of acid chloride (63mmol) in 30ml dry dichloromethane was added to a suspension of anhydrous aluminum chloride (8.41g, 63mmol) in 30ml dry dichloromethane and the mixture was stirred at 5C for 1h under Argon. The solution of aluminum chloride: acid chloride complex was added dropwise over 30min to a solution of ferrocene (11.16g, 60mmol) in 100ml dry dichloromethane at 0C. The reaction mixture was warmed to room temperature and stirred for 16h. A solution of NaBH4 (2.38g, 63mmol) in 25ml diglyme was added dropwise to the purple reaction mixture at-5C. An orange solution was formed and stirred at 0C for 1h. The mixture was then hydrolyzed with addition of 20ml water while maintaining its temperature at less than or equal to 10C. The mixture was allowed to separate by settling and the organic phase was then withdrawn. The aqueous phase was extracted with 3 times 30ml of dichloromethane and then all the organic phases are combined. Combined organic layer was washed with 50ml of brine and then dichloromethane was distilled under atmospheric pressure. The diglyme and the residual ferrocene which was found to be entrained by the diglyme were then distilled at reduced pressure approximately 20mm Hg and a column head temperature of 85-95C. The alkylferrocene derivatives were distilled at a more reduced pressure, less than 5mm Hg.

The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Teimuri-Mofrad, Reza; Safa, Kazem D.; Rahimpour, Keshvar; Journal of Organometallic Chemistry; vol. 758; (2014); p. 36 – 44;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1287-16-7

As the paragraph descriping shows that 1287-16-7 is playing an increasingly important role.

1287-16-7, Ferrocenylacetic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1287-16-7

1)1.2 mmol of ferrocenyl acetic acid and 1 mmol of 3- (4-hydroxyphenyl) -4-amino-5-mercapto-1,2,4-triazole were weighed out,Added to a dry 250mL single-necked flask,Then, 0.15 mmol of p-toluenesulfonic acid,7 mL of DMF was further added thereto,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,390W under irradiation once every 30s,The duration of irradiation was 4.5 min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,The crude product of 3- (4-hydroxyphenyl) -6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,Using a solvent of DMF and absolute ethanol in a volume ratio of 3: 1 mixed solvent,The crude product was recrystallized,A brown solid,The yield was 83%

As the paragraph descriping shows that 1287-16-7 is playing an increasingly important role.

Reference£º
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 102-54-5

102-54-5 Ferrocene 7611, airon-catalyst compound, is more and more widely used in various.

102-54-5, Ferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,102-54-5

Add 100ml of dichloromethane to the reaction flask, add 20g of ferrocene, then add 16g of ZnCl2, then add 10g of acetyl chloride to stir at room temperature, control the reaction, after the reaction is over, add the reaction solution In a 5% aqueous solution of hydrochloric acid, the liquid phase was separated, and the organic phase was washed three times with water, and the organic phase was separated. The organic phase was dried and concentrated to give 22 g of acetyl ferrocene in a yield of 90%.

102-54-5 Ferrocene 7611, airon-catalyst compound, is more and more widely used in various.

Reference£º
Patent; Nanjing Faen Chemical Co., Ltd.; Wang Kunpeng; Han Yuelin; (5 pag.)CN108409801; (2018); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 12093-10-6

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,12093-10-6

General procedure: The substituted ketone (3 mmol) and KOH(0.2 g) were dissolved in ethanol (5 mL) in a round bottomedflask and stirred at room temperature (25 C) for 10 min. Anethanolic solution of the substituted aromatic aldehyde (3 mmol,5 mL) was added drop wise and the mixture was stirred at roomtemperature. The progress of the reaction was monitored by TLCon silica gel sheets. The reaction was stopped by neutralizingthe stirred solution with 2 M HCl. In most of the cases the productwas obtained as a dark red precipitate after neutralization. It wasthen removed by filtration, washed with water. In the absence ofa precipitate on neutralization, the solution was extracted withethyl acetate (20 mL ¡Á 3). The organic layer was dried overanhydrous sodium sulphate and removed by evaporation underreduced pressure to give a liquid residue. The latter was passedthrough a column of silica gel (230-400 mesh) and eluted withTHF-hexane (1:4) to yield pure compound. All the synthesizedcompounds were well characterized by spectroscopic methodssuch as IR, NMR, Mass and elemental analysis and their spectralcharacteristics were found to be in good general agreement withthose found in literature30.

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Mukhtar, Sayeed; Manasreh, Waleed Atef; Parveen, Humaira; Azam, Amir; Asian Journal of Chemistry; vol. 26; 24; (2014); p. 8407 – 8412;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 12093-10-6

As the paragraph descriping shows that 12093-10-6 is playing an increasingly important role.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,12093-10-6

To a solution of hydroxylamine hydrochloride (0.83 g,11.97 mmol) in methanol (10 mL) was added sodium carbonate(0.63 g, 5.98 mmol). The mixture was stirred for 5 min. Then, ferrocenecarboxaldehyde1 (2.33 g, 10.88 mmol) was added and the reaction mixture was stirred at room temperature for 12 h. The precipitate formed was then filtered off and the filtrate was evaporated in vacuo. The product was washed with hexane (10 mL) toafford the pure ferrocenecarboxaldehyde oxime 4 in ca. 85% yield(Scheme 2).

As the paragraph descriping shows that 12093-10-6 is playing an increasingly important role.

Reference£º
Article; Lasri, Jamal; Elsherbiny, Abeer S.; Eltayeb, Naser Eltaher; Haukka, Matti; El-Hefnawy, Mohamed E.; Journal of Organometallic Chemistry; vol. 866; (2018); p. 21 – 26;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion