Share a compound : 1287-16-7

1287-16-7 is used more and more widely, we look forward to future research findings about Ferrocenylacetic acid

Ferrocenylacetic acid, cas is 1287-16-7, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1287-16-7

1)1 mmol of ferrocenyl acetic acid and 1 mmol of 3-ethyl-4-amino-5-mercapto-1,2,4-triazole were weighed out,Added to a dry 250mL single-necked flask,Then p-toluenesulfonic acid 0.13 mmol,Then 5 mL of DMF was added thereto,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,380W under irradiation once every 30s,The duration of irradiation is 3min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,A crude product of 3-ethyl-6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,With 80% aqueous ethanol recrystallization,A brown solid,The yield was 83%

1287-16-7 is used more and more widely, we look forward to future research findings about Ferrocenylacetic acid

Reference£º
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1277-49-2

1277-49-2 is used more and more widely, we look forward to future research findings about (1-Hydroxyethyl)ferrocene

(1-Hydroxyethyl)ferrocene, cas is 1277-49-2, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1277-49-2

Under an inert atmosphere, to a solution of alcohol 3 (2.00 g, 8.69mmol) and DMAP (53.1 mg, 0.43 mmol) in anhydrous CH 2 Cl 2 (20 mL)was added dropwise Et 3 N (3.64 mL, 26.1 mmol) at 0 C, followed byaddition of methanesulfonyl chloride (0.45 mL, 9.14 mmol). The reac-tion mixture was then stirred at r.t. for 4 h. The reaction wasquenched by addition of 5% solution of NaHCO 3 (40 mL), and the mix-ture was extracted with CHCl 3 (3 ¡Á 100 mL). Collected organic layerswere washed with brine (100 mL), dried over Na 2 SO 4 , filtrated, andsolvent was removed under reduced pressure to afford the crudeproduct. The crude product was purified by chromatography on Al 2 O 3(hexanes/EtOAc, 9:1; R f = 0.8) to afford target product 4.Yield: 1.59 g (86%); yellow-orange solid; mp 50-52 C (lit. 15 51-52 C).IR (ATR): 1623, 1408, 1103, 1045, 998, 894, 810, 726, 517, 477, 446cm -1 .1 H NMR (600 MHz, CDCl 3 ): delta = 6.46 (dd, J = 17.4, 10.7 Hz, 1 H), 5.34 (d,J = 17.5 Hz, 1 H), 5.03 (d, J = 10.7 Hz, 1 H), 4.36 (s, 2 H), 4.21 (s, 2 H),4.11 (s, 5 H).13 C NMR (151 MHz, CDCl 3 ): delta = 134.7, 111.1, 83.7, 69.3, 68.7, 66.8.HRMS (ESI): m/z calcd for [M + H + ] C 12 H 13 Fe + : 213.0367; found:213.0359.Obtained spectral data are in agreement with those of the commer-cially available product.

1277-49-2 is used more and more widely, we look forward to future research findings about (1-Hydroxyethyl)ferrocene

Reference£º
Article; Plevova, Kristina; Mudrakova, Brigita; ?ebesta, Radovan; Synthesis; vol. 50; 4; (2018); p. 760 – 763;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 102-54-5

As the paragraph descriping shows that 102-54-5 is playing an increasingly important role.

102-54-5, Ferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

DMF (8 mL) and POCl3 (5.6 mL, 60 mmol) were added to a round-bottom two-necked balloon adapted to a reflux condenser, containing ferrocene (2.79 g, 15 mmol) dissolved in chloroform (30 mL) under argon atmosphere and stirred at 0 C during 1.5 h. After addition was complete, the system was heated under reflux for 15 h. After completion, the reaction mixture was cooled to room temperature, poured on a beaker containing 100 mL ice-water mixture, neutralized/basified with aqueous 10% NaOH to pH 8-9 and extracted with ethyl acetate (3 * 50 mL). The organic layer was dried over MgSO4 and filtered. Solvent was then removed under low pressure (rotary evaporator) and 20 mL ethyl acetate was added to the crude product. The solvent was removed again under low pressure and the product was dried under reduced pressure, furnishing 2 as a dark red/brown solid, which was used without purification. Yield: 2.247 g, 70%. 1H NMR (CDCl3, 200 MHz): delta = 9.94 (s, 1 H); 4.78 (br, 2 H); 4.60 (br, 2 H); 4.27 (s, 5 H)., 102-54-5

As the paragraph descriping shows that 102-54-5 is playing an increasingly important role.

Reference£º
Article; Mayer, Joao C.P.; Sauer, Andre C.; Iglesias, Bernardo A.; Acunha, Thiago V.; Back, Davi F.; Rodrigues, Oscar E.D.; Dornelles, Luciano; Journal of Organometallic Chemistry; vol. 841; (2017); p. 1 – 11;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 12582-61-5

With the rapid development of chemical substances, we look forward to future research findings about Meso-5,10,15,20-Tetraphenyl-21H,23H-porphineironu-oxodimer

Meso-5,10,15,20-Tetraphenyl-21H,23H-porphineironu-oxodimer, cas is 12582-61-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,12582-61-5

General procedure: To a CH2Cl2 solution (15 mL) of [(TPP)Fe]2(mu-O) (0.033 g, 0.024 mmol) was added trichloroacetic acid (0.010 g, 0.06 mmol). The mixture was stirred for 45 min, during which time the color of the solution changed from green to brown. The solvent was reduced to ?3 mL and hexane (10 mL) was added. The solution was slowly concentrated under reduced pressure until precipitation of the product occurred. The dark brown precipitate was collected by filtration, washed with hexane (2 ¡Á 15 mL), and dried in vacuo to give (TPP)Fe(OC(=O)CCl3) (0.020 g, 0.024 mmol, 50% isolated yield).

With the rapid development of chemical substances, we look forward to future research findings about Meso-5,10,15,20-Tetraphenyl-21H,23H-porphineironu-oxodimer

Reference£º
Article; Xu, Nan; Yan, Beiqi; Awasabisah, Dennis; Powell, Douglas R.; Richter-Addo, George B.; Inorganica Chimica Acta; vol. 469; (2018); p. 183 – 188;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1293-65-8

With the rapid development of chemical substances, we look forward to future research findings about 1,1′-Dibromoferrocene

1,1′-Dibromoferrocene, cas is 1293-65-8, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1293-65-8

1 ,1′-Dibromoferrocene (0.67 g, 1.97 mmol) in anhydrous tetrahydrofuran (THF) (30 ml) was placed in a reaction vessel and cooled to -78 0C using a dry ice and acetone mixture, ?-butyl lithium (0.94 ml, 2.36 mmol) was added under inert conditions thereto and the contents of the reaction vessel kept stirred for approximately 1 hour while cold zinc chloride (2.16 ml, 2.16 mmol) was added. Tetrakis(triphenylphosphine)palladiumO (50 mg) and 4,5- dichlorophthalonitrile (0.5 g, 1.97 mmol) were then added. The contents of the reaction vessel were allowed to warm to room temperature and were kept stirred for approximately 2 hours before heating to approximately 90 C for 12 hours. Thereafter, water (20 ml) was added and extracted with dichloromethane (3 x 20 ml). The combined organic layers were dried over magnesium sulfate and reduced to dryness under reduced pressure to obtain a crude product. The crude product was placed on alumina and eluted with diethyl ether ; petroleum spirit (55:45) to yield red crystals.

With the rapid development of chemical substances, we look forward to future research findings about 1,1′-Dibromoferrocene

Reference£º
Patent; CORUS UK LIMITED; HOLLIMAN, Peter; RUGEN-HANKEY, Sarah; WO2010/136178; (2010); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1293-65-8

With the rapid development of chemical substances, we look forward to future research findings about 1,1′-Dibromoferrocene

1,1′-Dibromoferrocene, cas is 1293-65-8, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1293-65-8

General procedure: In a Schlenk tube CuI (1.2 mg, 6.3 mumol, 5 mol. %), the respective ligand (10-15 mol. %), the respective ferrocenyl halide (0.125 mmol), the respective phenol (0.25-0.35mmol), and a base (0.25 mmol) were dissolved in toluene (7.5 mL), and the reaction mixture was stirred at 110C for a given time (26-60 h). After evaporation of the volatiles the crude products were purified by column chromatography in cyclohexane-ethyl acetate.

With the rapid development of chemical substances, we look forward to future research findings about 1,1′-Dibromoferrocene

Reference£º
Article; Frey, Guido D.; Hoffmann, Stephan D.; Zeitschrift fur Naturforschung – Section B Journal of Chemical Sciences; vol. 70; 1; (2015); p. 65 – 70;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1273-82-1

With the rapid development of chemical substances, we look forward to future research findings about Aminoferrocene

Aminoferrocene, cas is 1273-82-1, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-82-1

General procedure: Aminoferrocene (1, 11.0 mg, 0.0547 mmol) was dissolved in 9 cm3 toluene. Formylphenylboronic acid (2, 8.2 mg,0.0547 mmol) was dissolved in 1 cm3 dry ethanol. Both reagent solutions were mixed in an evaporating flask. The solvents were removed under reduced pressure on a rotary vacuum evaporator (the water bath temperature strictly below 40 C) to give [(ferrocenylimino)methyl]phenylboronic acid 3 as a violet/red powder; 18.2 mg (quant.). The products were used as prepared without need of a further purification (Fig. 5).

With the rapid development of chemical substances, we look forward to future research findings about Aminoferrocene

Reference£º
Article; Konhefr, Martin; Lacina, Karel; Langmajerova, Monika Skrutkova; Glatz, Zden?k; Skladal, Petr; Mazal, Ctibor; Monatshefte fur Chemie; vol. 148; 11; (2017); p. 1953 – 1958;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1293-65-8,1,1′-Dibromoferrocene,as a common compound, the synthetic route is as follows.,1293-65-8

1 ,1′-Dibromoferrocene (0.67 g, 1.97 mmol) in anhydrous tetrahydrofuran (THF) (30 ml) was placed in a reaction vessel and cooled to -78 0C using a dry ice and acetone mixture, ?-butyl lithium (0.94 ml, 2.36 mmol) was added under inert conditions thereto and the contents of the reaction vessel kept stirred for approximately 1 hour while cold zinc chloride (2.16 ml, 2.16 mmol) was added. Tetrakis(triphenylphosphine)palladiumO (50 mg) and 4,5- dichlorophthalonitrile (0.5 g, 1.97 mmol) were then added. The contents of the reaction vessel were allowed to warm to room temperature and were kept stirred for approximately 2 hours before heating to approximately 90 C for 12 hours. Thereafter, water (20 ml) was added and extracted with dichloromethane (3 x 20 ml). The combined organic layers were dried over magnesium sulfate and reduced to dryness under reduced pressure to obtain a crude product. The crude product was placed on alumina and eluted with diethyl ether ; petroleum spirit (55:45) to yield red crystals.

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; CORUS UK LIMITED; HOLLIMAN, Peter; RUGEN-HANKEY, Sarah; WO2010/136178; (2010); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1273-82-1

With the rapid development of chemical substances, we look forward to future research findings about Aminoferrocene

Aminoferrocene, cas is 1273-82-1, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-82-1

Triphosgene (1.61 g, 5,44 mmol) and aminoferrocen (1.09 g, 5.44 mmol) were added to toluene (98 mL) and purged with argon. The mixture was heated up to 120 C and kept at this temperature until all starting materials were dissolved (~30 min). The solution obtained was cooled down to 22 C and 4-(hydroxymethyl)-2-methylphenylboronic acid pinacol ester (1.35 g, 5.44 mmol) dissolved in CH2Cl2 (132 mL) was added dropwise. The solution was left stirring at 22 C for 44 h. Then, the solvent was removed in vacuum (10 mbar) and the product was purified by column chromatography on silica gel using hexane / EtOAc (10/2, v/v) as eluent. Yield 0.83 g (32 %). Rf= 0.33 (silica, eluent – CH2Cl2 / EtOAc, 7/2, v/v). 1H NMR (200 MHz, acetone-d6), delta in ppm: 7.72 (d, 1 H), 7.21 (m, 2H), 5.12 (s, 2H), 4.56 (s, 2H), 4.11 (s, 5H), 3.93 (s, 2H), 2.52 (t, 3H),1.34 (s, 12H). 13C NMR (100.55 MHz, acetone-d6), delta in ppm: 145.8, 141.0, 137.0, 129.7, 124.7, 84.3, 69.8, 66.5, 64.7, 61.1, 25.3, 22.5. FAB MS: calculated for C25H30BFeNO4 475.2, found 475.2 m/z. C, H, N analysis: calculated for C25H30BFeNO4 – C 63.2 %; H 6.4 %; N 3.0 %; found – C 63.3 %; H 6.6 %; N2.9%.

With the rapid development of chemical substances, we look forward to future research findings about Aminoferrocene

Reference£º
Patent; Ruprecht-Karls-Universitaet Heidelberg; EP2497775; (2012); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1287-16-7

With the rapid development of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

Ferrocenylacetic acid, cas is 1287-16-7, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1287-16-7

Example 1 – Preparation of ferrocene modified phospholipid (3)[0064] Ferrocene modified phospholipid (FC-DSP) was prepared in the following manner: triethylamine (0.077 mmol, 0.01 ml_, 1.4 eq) and N,N-dicyclohexylcarbodiimide (0.077 mmol, 15.9 mg, 1.4 eq) were added to a solution that contained 1 ,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (0.055 mmol, 35 mg, 1.0 eq) and ferroceneacetic acid (0.077 mmol, 18.8 mg, 1.4 eq) in anhydrous DCM (1.5 ml_). The reaction was stirred overnight, until N MR indicated conversion to the coupling was completed. The solution was concentrated under vacuum and then was purified on iatrobeads gel chromatography ( 10% MeOH : DCM). A dark-brown oil (29.4 mg, 0.0341 mmol) was obtained (62% yield). H N MR (300 MHz, CDCI3) delta 7.04 (br, 1 H), 5.23 (br, 1 H), 4.37 (br, 1 H), 4.22 (br, 2H), 4.12 (br, 5H), 3.94 (br, 2H), 3.49 (br, 4H), 3.28 (br, 2H), 3.05 (br, 4H), 2.28 (br, 4H), 1.58 (br, 4H), 1.25 (br, 40H), 0.87 (t, J = 6.5 Hz, 6H).3P NMR (122 MHz, CDCI3) delta 0.15 (s).3C N MR (75 MHz, CDCI3) delta 173.60 (s), 173.21 (s), 70.56 (s), 69.26 (s), 68.92 (s), 68.14 (s), 62.82 (s), 45.87 (s), 34.44 (s), 34.25 (s), 32.05 (s), 29.80 (s), 29.65 (s), 29.49 (s), 29.29 (s), 25.02 (s), 22.81 (s), 14.24 (s), 8.73 (s). HRMS (ESI): Calc. for C45H76FeN09P (M+H)+: 862.4680; found : 862.4624.

With the rapid development of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

Reference£º
Patent; THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY; TRANSFERT PLUS SOCIETE EN COMMANDITE; MAUZEROLL, Janine; NOYHOUZER, Tomer Aharon; SNOWDEN, Michael Edward; DAUPHIN DUCHARME, Philippe; MAZURKIEWICZ, Stephani; L’HOMME, Chloe; DESJARDINS, Samuel; CANESI, Sylvain; (84 pag.)WO2016/115626; (2016); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion