Analyzing the synthesis route of 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1293-65-8,1,1′-Dibromoferrocene,as a common compound, the synthetic route is as follows.,1293-65-8

1 ,1′-Dibromoferrocene (0.67 g, 1.97 mmol) in anhydrous tetrahydrofuran (THF) (30 ml) was placed in a reaction vessel and cooled to -78 0C using a dry ice and acetone mixture, ?-butyl lithium (0.94 ml, 2.36 mmol) was added under inert conditions thereto and the contents of the reaction vessel kept stirred for approximately 1 hour while cold zinc chloride (2.16 ml, 2.16 mmol) was added. Tetrakis(triphenylphosphine)palladiumO (50 mg) and 4,5- dichlorophthalonitrile (0.5 g, 1.97 mmol) were then added. The contents of the reaction vessel were allowed to warm to room temperature and were kept stirred for approximately 2 hours before heating to approximately 90 C for 12 hours. Thereafter, water (20 ml) was added and extracted with dichloromethane (3 x 20 ml). The combined organic layers were dried over magnesium sulfate and reduced to dryness under reduced pressure to obtain a crude product. The crude product was placed on alumina and eluted with diethyl ether ; petroleum spirit (55:45) to yield red crystals.

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; CORUS UK LIMITED; HOLLIMAN, Peter; RUGEN-HANKEY, Sarah; WO2010/136178; (2010); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion