The important role of Ferrocenylacetic acid

1287-16-7 is used more and more widely, we look forward to future research findings about Ferrocenylacetic acid

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenylacetic acid, and cas is 1287-16-7, its synthesis route is as follows.,1287-16-7

1)1 mmol of ferrocenyl acetic acid and 1 mmol of 3- (4-aminophenyl) -4-amino-5-mercapto-1,2,4-triazole were weighed,Added to a dry 250mL single-necked flask,Then 0.1 mmol p-toluenesulfonic acid,To this was added 4 mL of DMF,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,400W under irradiation once every 30s,Irradiation duration of 5min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,That is, 3- (4-aminophenyl) -6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazolecrude product,The crude product was recrystallized using 80% aqueous ethanol,A brown solid,The yield is 85%

1287-16-7 is used more and more widely, we look forward to future research findings about Ferrocenylacetic acid

Reference£º
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of Ferrocene

102-54-5 is used more and more widely, we look forward to future research findings about Ferrocene

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocene, and cas is 102-54-5, its synthesis route is as follows.,102-54-5

The mixture of ferrocene (2.79 g, 15 mmol), DMF (2.19 g, 30 mmol) and chloroform (11 mL) was stirred at 0 C under N2 atmosphere. Phosphorus oxychloroide (4.59 g, 30 mmol) was added slowly over a period of 30 min at 0 C and stirred at the temperature range of 55-60 C for 24 h until the reaction was completed. The mixture was poured into ice-water (100 mL) and neutralized with 5% aqueous Na2CO3 accompanying the precipitate formation. The precipitate was filtered off and the filtrate was extracted with 100 mL of toluene. Then the organic phase was washed three times with water, dried over anhydrous magnesium sulfate, filtered and the filtrate was concentrated under reduced pressure to give a crude product. The crude product was purified by column chromatography on silica gel to give compound 8a as a crimson solid (75.7%).

102-54-5 is used more and more widely, we look forward to future research findings about Ferrocene

Reference£º
Article; Chen, Peiqi; Liu, Chunjuan; Hu, Jianfeng; Zhang, Hao; Sun, Ranfeng; Journal of Organometallic Chemistry; vol. 854; (2018); p. 113 – 121;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1293-65-8

1293-65-8 is used more and more widely, we look forward to future research findings about 1,1′-Dibromoferrocene

1,1′-Dibromoferrocene, cas is 1293-65-8, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1293-65-8

Example 1; L11,1′ bis-[(Sp,Rc,SFe)(1-N,N- Dimethylamino)ethylferrocenyl)phenylphosphino] ferrocene L1To a solution of (R)-N, N-dimethyl-1-ferrocenylethylamine [(R)-Ugi’s amine] (3.09 g, 12 mmol) in Et2O (20 ml) was added 1.5 M t-BuLi solution in pentane(8.0 ml, 12.0 mmol) at -78 0C. After addition was completed, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to -78 0C again, and dichlorophenylphosphine (1.63 ml, 12.0 mmol) was added in one portion. After stirring for 20 min at -78 0C, the mixture was slowly warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to -78 0C again, and a suspension of 1 ,1′ dilithioferrocene [prepared from 1 ,1′ dibromoferrocene(1.72 g, 5.0 mmol) and 1.5 M t-BuLi solution in pentane (14.0 ml, 21.0 mmol) in Et2O (20 ml) at -78 0C] was added slowly via a cannula. The mixture was warmed to room temperature and allowed to stir for 12 h. The reaction was quenched by the addition of saturated NaHCO3 solution (20 ml). The organic EPO layer was separated and dried over MgSO4 and the solvent removed under reduced pressure. The filtrate was concentrated. The residue was purified by chromatography (SiO2, hexane-EtOAc-Et3N = 85:10:5) to afford an orange solid (3.88 g, 85%) as a mixture of 95% his-(Sp,Rc,SFe) title compound L1 and 5% (Rp, Rc, S Fe-S p, Rc, S Fe) meso compound. The meso compound can be removed by further careful purification using chromatography (SiO2, hexane- EtOAc-Et3N = 85:10:5). Orange/yellow crystalline solid m.p. 190-192 0C. [alpha]D = -427 (c=0.005 (g/ml), toluene); 1H NMR (CDCI3, 400.13 MHz): delta 1.14 (d,6H,J = 6.7 Hz), 1.50 (s, 12H); 3.43 (m; 2H); 3.83 (m, 2H); 3.87 (m, 2H); 4.01 (s, 10H), 4.09 (t, 2H, J = 2.4 Hz); 4.11 (m, 2H); 4.20 (m, 2H); 4.28 (m, 2H); 4.61 (m, 2H); 4.42 (d, 2H1 J = 5.3 Hz); 7.18 (m, 6H); 7.42(m, 4H) ppm. 13C NMR (CDCI3, 100.61 MHz): delta 38.28, 57.40 (d, J = 5.6 Hz); 67.02, 69.04 (d, J = 4.0 Hz); 69.16 (d, J = 51.6 Hz); 69.66, 71.60 (d, J = 4.8 Hz), 71.91 (d, J = 7.2 Hz), 72.18 (d, J = 5.6 Hz), 75.96 (d, J = 35.7 Hz), 79.96 (d, J = 6.4 Hz), 95.73 (d, J = 19.1 Hz), 127.32 (d, J = 7.9 Hz), 127.62, 133.12 (d, J = 21.4 Hz), 139.73 (d, J = 4.0 Hz). 31P NMR (CDCI3, 162 MHz): delta -34.88 (s). Found: C, 65.53; H, 5.92; N 3.01 Calculated for C50H54Fe3N2P2; C, 65.81 ; H, 5.97; N, 3.07. HRMS (1OeV, ES+): Calcd for C50H55Fe3N2P2 [M+H]+: 913.1889; Found: 913.1952. The label SP refers to S configuration at phosphorus, Rc refers to R configuration at carbon (or other auxiliary) and Spe refers to S configuration at the planar chiral element.

1293-65-8 is used more and more widely, we look forward to future research findings about 1,1′-Dibromoferrocene

Reference£º
Patent; PHOENIX CHEMICALS LTD.; WO2006/75177; (2006); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1293-65-8

1293-65-8 is used more and more widely, we look forward to future research findings about 1,1′-Dibromoferrocene

1,1′-Dibromoferrocene, cas is 1293-65-8, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1293-65-8

General procedure: In a Schlenk tube CuI (1.2 mg, 6.3 mumol, 5 mol. %), the respective ligand (10-15 mol. %), the respective ferrocenyl halide (0.125 mmol), the respective phenol (0.25-0.35mmol), and a base (0.25 mmol) were dissolved in toluene (7.5 mL), and the reaction mixture was stirred at 110C for a given time (26-60 h). After evaporation of the volatiles the crude products were purified by column chromatography in cyclohexane-ethyl acetate.

1293-65-8 is used more and more widely, we look forward to future research findings about 1,1′-Dibromoferrocene

Reference£º
Article; Frey, Guido D.; Hoffmann, Stephan D.; Zeitschrift fur Naturforschung – Section B Journal of Chemical Sciences; vol. 70; 1; (2015); p. 65 – 70;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 12093-10-6

12093-10-6 is used more and more widely, we look forward to future research findings about Ferrocenecarboxaldehyde

Ferrocenecarboxaldehyde, cas is 12093-10-6, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,12093-10-6

General procedure: To a clean and dry round bottom flask with a septum, 3-5mmol of the ferrocenylketone were added and approximately 20mL of dimethoxyethane (DME) were transferred with a positive nitrogen pressure; the mixture was stirred to obtain a reddish solution. 0.75equivalents of lithium aluminum hydride (1M in tetrahydrofuran) were added, and a change of color from red to yellow in the solution was observed. The reaction was stopped after 30min at room temperature; complete transformation was confirmed with TLC. After this time, Glauber’s salt was added and the mixture was stirred until a formation of a granular precipitate was observed. The mixture was filtered, and the solvent was eliminated to obtain yellow to orange oils or solids. The compounds were employed directly for following reactions without further purification.

12093-10-6 is used more and more widely, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Article; Garcia-Barrantes, Pedro M.; Lamoureux, Guy V.; Perez, Alice L.; Garcia-Sanchez, Rory N.; Martinez, Antonio R.; San Feliciano, Arturo; European Journal of Medicinal Chemistry; vol. 70; (2013); p. 548 – 557;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 12093-10-6

12093-10-6 is used more and more widely, we look forward to future research findings about Ferrocenecarboxaldehyde

Ferrocenecarboxaldehyde, cas is 12093-10-6, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,12093-10-6

General procedure: A 100mL dry, nitrogen purged round bottom flask was charged with the carbonyl compound in dry tetrahydrofuran. Freshly prepared Cp2TiMe2 in toluene was added. The reaction mixture was heated to 80¡ãC for 10h and was monitored by thin layer chromatography. Insoluble precipitate was separated, the solvent evaporated under reduced pressure, and the residue obtained was purified by column chromatography.

12093-10-6 is used more and more widely, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Article; Singh, Jatinder; Ghosh, Sanjib; Deb, Mayukh; Elias, Anil J.; Journal of Organometallic Chemistry; vol. 818; (2016); p. 85 – 91;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1287-16-7

The synthetic route of 1287-16-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1287-16-7,Ferrocenylacetic acid,as a common compound, the synthetic route is as follows.,1287-16-7

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

The synthetic route of 1287-16-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 12093-10-6

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.12093-10-6,Ferrocenecarboxaldehyde,as a common compound, the synthetic route is as follows.,12093-10-6

General procedure: (i-Pr-Pybox)ZnCl2 (2b) (10.9 mg, 0.025 mM, 0.1 equiv) was added in H2O (0.5 mL), thenferrocenecarboxaldehyde (53.4 mg, 0.25 mM, 1.0 equiv) and activated methylene compound(0.5 mM, 2.0 equiv) were added. The mixture was stirred at room temperature forfew minutes, after which the crude reaction mixture was loaded directly onto a column ofsilica gel and purified by column chromatography to give the solid.

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Jia, Wei-Guo; Li, Dan-Dan; Zhang, Hui; Dai, Yuan-Chen; Sheng, En-Hong; Journal of Coordination Chemistry; vol. 68; 2; (2015); p. 220 – 228;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1293-65-8

As the paragraph descriping shows that 1293-65-8 is playing an increasingly important role.

1293-65-8, 1,1′-Dibromoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1293-65-8

General procedure: In a Schlenk tube CuI (1.2 mg, 6.3 mumol, 5 mol. %), the respective ligand (10-15 mol. %), the respective ferrocenyl halide (0.125 mmol), the respective phenol (0.25-0.35mmol), and a base (0.25 mmol) were dissolved in toluene (7.5 mL), and the reaction mixture was stirred at 110C for a given time (26-60 h). After evaporation of the volatiles the crude products were purified by column chromatography in cyclohexane-ethyl acetate.

As the paragraph descriping shows that 1293-65-8 is playing an increasingly important role.

Reference£º
Article; Frey, Guido D.; Hoffmann, Stephan D.; Zeitschrift fur Naturforschung – Section B Journal of Chemical Sciences; vol. 70; 1; (2015); p. 65 – 70;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 102-54-5

The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.102-54-5,Ferrocene,as a common compound, the synthetic route is as follows.,102-54-5

The alcohol 1b was synthesized by acylation offerrocene (Aldrich) with acetic anhydride in presence of BF3Et2O21followed by reduction of the resulting acetylferrocene withNaBH4.22

The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Trofimov, Boris A.; Oparina, Ludmila A.; Tarasova, Olga A.; Artem’ev, Alexander V.; Kobychev, Vladimir B.; Gatilov, Yuriy V.; Albanov, Alexander I.; Gusarova, Nina K.; Tetrahedron; vol. 70; 35; (2014); p. 5954 – 5960;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion