The important role of 1293-65-8

With the complex challenges of chemical substances, we look forward to future research findings about 1,1′-Dibromoferrocene

Name is 1,1′-Dibromoferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1293-65-8, its synthesis route is as follows.,1293-65-8

Preparation of i-phenylchlorophosphine-i ‘-bromoferrocene (X1 )14.5 ml (23.2 mmol) of n-BuLi (1.6 M in hexane) are added dropwise to a solution of 8 g (23.2 mmol) of 1 ,1 ‘-dibromoferrocene in 30 ml of THF at a temperature of < -30 C. The mixture is stirred for a further 30 minutes at this temperature. It is then cooled to -78C and 3.15 ml (23.2 mmol) of phenyldichlorophosphine are added dropwise at such a rate that the temperature does not exceed -60C. After stirring the mixture at -78C for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. This gives a suspension of the monochlorophosphine X1.; Preparation of i-dicyclohexylphosphino-i '-bromoferrocene of the formula (A2)120 ml (0.3 mol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 103 g (0.3 mol) of 1 ,1 '-dibromoferrocene in 300 ml of THF at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours. It is then cooled to -50C and 66.2 ml (0.3 mol) of dicyclohexylphosphine chloride are added dropwise at such a rate that the temperature does not exceed -45C. After stirring the mixture for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. After addition of 150 ml of water, the reaction mixture is shaken with hexane. The organic phases are dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is crystallized in ethanol. The product A2 is obtained in a yield of 84% (yellow solid). 1H NMR (300 MHz, C6D6): delta 1.20-2.11 (m, 22H), 3.97 (m, 2H), 4.23 (m, 2H), 4.26 (m, 2H), 4.41 (m, 2H). 31P NMR (121.5 MHz, C6D6): delta -8.3 (s).; Example B17: Preparation of the compound (Rc,SFc,SP)-1-[2-(1-dimethylaminoethyl)ferrocen- i-yllcyclohexylphosphino-i '-bis-beta.S-d^trifluoromethylJphenyllphosphinoferrocene (B17):4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 '-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours to give a suspension of 1-bromo-1 '-lithioferrocene X5.In a second reaction vessel, 7.7 ml (10 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.57 g (10 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 15 ml of TBME at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to 0 and the mixture is stirred for another 1.5 hours. The reaction mixture is then cooled to -78C and 1.51 ml (10 mmol) of dichlorocyclohexyl- phosphine are added. Further stirring at -78C for 30 minutes and, after removal of cooling, at room temperature for another one hour gives a suspension of the chlorophosphine X4 which is subsequently added at a temperature of <-10C to the suspension of 1-bromo-1 '-lithio- ferrocene X5. The cooling is then removed and the mixture is stirred at room temperature for a further 1.5 hours. After renewed cooling to <-50C, 4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise. After the addition, the temperature is allowed to rise to 0C and the mixture is stirred for a further 30 minutes. It is then cooled to -20C and 4.63 g (10 mmol) of bis[3,5-di(trifluoromethyl)phenyl]chlorophosphine are added. The cooling is subsequently removed and the mixture is stirred at room temperature for another 1.5 hours. The reaction mixture is admixed with 1 N NaOH and extracted. The organic phase is dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is subsequently heated at 150C for one hour. Chromatographic purification (silica gel 60; eluent = hexane/ethyl acetate 8:1 ) gives the compound B17 as a yellow solid (yield: 66%). 1H NMR (300 MHz, C6D6): delta 1.25 (d, 3H, J = 6.7 Hz), 1.00-2.29 (m, 1 1 H), 2.20 (s, 6H), 3.78 (m, 1 H), 4.02 (m, 1 H), 4.04 (s, 5H), 4.09 (m, 1 H), 4.14 (m, 1 H), 4.17 (m, 1 H), 4.21 (m, 1 H), 4.40 (m, 2H), 4.60 (m, 1 H), 7.80 (d, 2H, J = 6.8 Hz), 8.00 (d, 4H, J = 6.0 Hz). 31P NMR (121.5 MHz, C6D6): delta -27.1 (s); -14.1 (s).; Example B18: Reaction schemeX24 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 ‘-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours. 2.21 ml (10 mmol) of dicyclohexylphosphine chloride are then added dropwise at such a rate that the temperature does not exceed -20C. After stirring the mixture for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. It is cooled back down to 30C and 4.4 ml (11 mmol) of n-BuLi (2.5 M in hexane) are added dropwise. The mixture is subsequently stirred at -10C for 30 minutes. The reaction mixture is the... With the complex challenges of chemical substances, we look forward to future research findings about 1,1'-Dibromoferrocene Reference£º
Patent; SOLVIAS AG; WO2007/116081; (2007); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion