Extracurricular laboratory: Synthetic route of 14024-18-1

As the rapid development of chemical substances, we look forward to future research findings about 14024-18-1

Iron(III) acetylacetonate, cas is 14024-18-1, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,14024-18-1

The magnetic nanoparticles were synthesized according to a previously reported procedure26. Briefly, a solution of Fe(acac)3 (5.65 g, 0.016 mol), benzyl ether (80 mL) and oleylamine (80 mL) was heated to 110 C and allowed to reflux for 1 h with vigorous stirring. The temperature was raised to 210 C and then refluxed for 2 h under an argon atmosphere. After cooling to room temperature, the reaction mixture was centrifuged at 10,000 rpm for 20 min, affording the magnetic nanoparticles (Fe3O4) as a black solid. The magnetic nanoparticles were then dispersed in a mixture of 1-propanol (180 mL), conc. NH4OH (25 mL) and deionized water (18 mL) in a 500 mL round-bottom flask by ultra-sonication for 30 min under an argon atmosphere. Following this, tetraethylorthosilicate (TEOS) (6 mL, 0.027 mol) was added dropwise for 30 min with vigorous stirring. After stirring at room temperature for 6 h, thesilica-coated magnetic nanoparticles (Fe3O4(at)SiO2) were separated from the solution using an external magnet and then washed twice successively with 1-propanol and deionized water, respectively. The Fe3O4(at)SiO2 nanoparticles (brown solid) were then dried under vacuum at 60 C for 6 h, prior to use.

As the rapid development of chemical substances, we look forward to future research findings about 14024-18-1

Reference£º
Article; Wechakorn, Kanokorn; Chanpanich, Pairsunan; Kamkalong, Pimfa; Anantachisilp, Suranan; Oriental Journal of Chemistry; vol. 35; 3; (2019); p. 1054 – 1061;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion