1271-42-7, Ferrocenecarboxylic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated
A solution of ferrocene carboxylic acid (2.3 g, 10 mmol) in dry dichloromethane (20 ml.) was treated with oxalyl chloride dropwise (1.8 ml_, 20 mmol) at 0 C under nitrogen with the addition of four drops of DMF. The reaction mixture was returned to r.t. and stirred for 3 hours. The solvent and the excess oxalyl chloride was removed under nitrogen, and the resulting red solid was redissolved to fresh dry dichloromethane (20 ml_). Tetrabutylammoniun bromide (12 mg, 0.03 mmol) was added followed by the addition of a NaN3 solution (1 g, 15 mmol) in water (5 ml_). The reaction mixture was stirred under nitrogen and at r.t for a further 18 h. The reaction was quenched by the addition of water (50 ml.) and the organic phase was separated, and the aqueous was further extracted with dichloromethane (2 x 20 ml_). The combined organic phase was washed with brine, dried with Na2S04 and the solvent was removed under vacuum. The desired azide was isolated by flash column chromatography eluting with dichloromethane:hexane (1 :1 ). Yield: 78%. NMR (CDCIs, ppm): 1H (500 MHz) 4.78, 4.55, 4.05; 13C (126 MHz) 176.1 , 89.0, 76.3, 78.0, 80.1.
1271-42-7, The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.
Reference£º
Patent; NATIONAL CENTRE FOR SCIENTIFIC RESEARCH “DEMOKRITOS”; PELECANOU ZAMPARA, Maria; SAGNOU, Marina; PAPADOPOULOS, Minas; PIRMETTIS, Ioannis; MAVROIDI, Barbara; SHEGANI, Antonio; (38 pag.)WO2019/180200; (2019); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion