Downstream synthetic route of Acetylferrocene

With the synthetic route has been constantly updated, we look forward to future research findings about Acetylferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO379,mainly used in chemical industry, its synthesis route is as follows.,1271-55-2

General procedure: A solution of pure TsNHNH2 (15 mmol) in methanol (30 mL) was stirred and heated to 60 C until the TsNHNH2 dissolved. The mixture was cooled to room temperature. Then a solution of ferrocenylketone (10 mmol) in methanol was dropped into the mixture slowly. After approximately 0.5-2 h, the crude products could be obtained as solid precipitate. The precipitate was washed with petroleum ether then removed in vacuo to give the pure products. In general, the yields were 68-86 %. Because of the relatively low activity of some ketones, their reactions at room temperature may be incomplete. They should be reacted in refluxing methanol. The reaction could be monitored by TLC.

With the synthetic route has been constantly updated, we look forward to future research findings about Acetylferrocene,belong iron-catalyst compound

Reference£º
Article; Ling, Li; Hu, Jianfeng; Huo, Yanhong; Zhang, Hao; Tetrahedron; vol. 73; 1; (2017); p. 86 – 97;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1271-42-7

As the rapid development of chemical substances, we look forward to future research findings about 1271-42-7

Ferrocenecarboxylic acid, cas is 1271-42-7, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1271-42-7

0120] Ferrocene (6.0 g, 32 mmol) and potassium tert-butoxide (0.46 g, 4.08 mmol) were completely dissolved in dryTHF (300 mL). The orange solution was cooled to -78C when tert-butyllithium (34.0 mL, 64.5 mmol, 1.9 M in pentane)was added dropwise over a period of 15 min, with the temperature maintained below -70C. The reaction mixture wasstirred at -78C for 1 h and then poured on a slurry of dry ice (excess) and diethyl ether. The mixture was warmed toroom temperature overnight and extracted with an aqueous solution of sodium hydroxide (0.75 N, 4 x 250 mL). Thecombined aqueous layers were neutralized with hydrochloric acid (pH > 4) and the resulting orange solid was extractedwith Et2O (4 x 250 mL) until the organic layer remained colourless. The combined organic layers were filtered to removetraces of ferrocenedicarboxylic acid, dried over MgSO4, filtered and the solvent was evaporated under reduced pressureto give ferrocenecarboxylic acidas an orange solid in 35% yield. After suspending the ferrocenecarboxylic acid (462 mg,2.01 mmol) in dry CH2Cl2 (23 mL), oxalyl chloride (1100 mL, 13.64 mmol) in dry CH2Cl2 (10 mL) was added dropwiseto the reaction mixture whereby the orange suspension turned dark red. The reaction mixture was refluxed for 2 h andthen stirred overnight at room temperature. The solvent was then removed under vacuum. The product was not purifiedand used immediately for the next synthetic step.

As the rapid development of chemical substances, we look forward to future research findings about 1271-42-7

Reference£º
Patent; Universitaet Zuerich; The University of Melbourne; Gasser, Gilles; Gasser, Robin B.; Hess, Jeannine; Patra, Malay; Jabbar, Abdul; EP2821412; (2015); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1273-86-5

As the rapid development of chemical substances, we look forward to future research findings about 1273-86-5

Ferrocenemethanol, cas is 1273-86-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-86-5

Ferrocene methanol (ferrocenyl methanol, 3mmol), triphenylphosphine (PPh3,1.18g, 4.5mmol), all-trans retinoic acid (ATRA, 3mmol), was dissolved in 20mL of tetrahydrofuran (THF), stir to dissolve, then under nitrogen, was added diisopropyl azodicarboxylate (DIAD, 0.8g, 4.5mmol) under conditions of 0 C . The reaction Thin chromatography (TLC) monitoring process, after the completion of the reaction continued at room temperature for 2 hours. 30 deg C and concentrated in vacuo by rotary evaporation to a thick oil, the product was extracted using silica gel column chromatography (ethyl acetate / petroleum ether = 2: 8 volume ratio) to give the product as the first ferrocene carboxylic acid (FCRA ), 83% yield

As the rapid development of chemical substances, we look forward to future research findings about 1273-86-5

Reference£º
Patent; Jilin University; SUN, HONGCHEN; SUN, BIN; ZHU, SHOUJUN; WANG, DANDAN; ZHANG, KAI; LI, XING; WANG, LU; WANG, YIBO; TANG, QI; XIN, YING; YANG, BAI; (13 pag.)CN106265600; (2017); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenemethanol

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO386,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: 1.1 mmol of triethylamine was added to a stirred mixture of 1.0 mmol of metallocene alcohol (7, 8, 12) or 0.45 mmol of ferrocene diol (10, 11) and 1.0 mmol of 4,5-dichloroisothiazole- or 5-arylisoxazole-3-carbonyl chloride in 50 mL of diethyl ether at 20-23C. The reaction mixture was stirred at that temperature during 24 h. The precipitated triethylamine hydrochloride was filtered off and washed with diethyl ether (5 ¡Á 10 mL). The filtrate was washed with 10 % aqueous NaCl and 5 % aqueous NaHCO3. The solvent was removed, and the residue was recrystallized from a benzene-hexane (2 : 1) mixture (14, 15, 19, and 20) or from hexane (16,17, 21, and 22). 3,4,4-Trichloro-1-cymantrenylbut-3-en-1-yl 4,5-dichloroisothiazole-3-carboxylate 18 was obtained as a viscous oil and was used without further purification.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Potkin; Dikusar; Kletskov; Petkevich; Semenova; Kolesnik; Zvereva; Zhukovskaya; Rosentsveig; Levkovskaya; Zolotar; Russian Journal of General Chemistry; vol. 86; 2; (2016); p. 338 – 343; Zh. Obshch. Khim.; vol. 86; 2; (2016); p. 338 – 343,6;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Application of 1273-86-5

As the rapid development of chemical substances, we look forward to future research findings about 1273-86-5

A common heterocyclic compound, the iron-catalyst compound, name is Ferrocenemethanol,cas is 1273-86-5, mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

A mixture of K2CO3 (1 mmol) and the catalyst (52 mg, ?3 mol% of Pd2+) in toluene (5 ml) was prepared in a two necked flask. The flask was evacuated and refilled with pure oxygen. To this solution, the alcohol (1 mmol, in 1 ml toluene) was injected and the resulting mixture was stirred at 80 C under an oxygen atmosphere. After completion of reaction, the reaction mixture was filtered off and the catalyst rinsed twice with CH2Cl2 (5 ml). The excess of solvent was removed under reduced pressure to give the corresponding carbonyl compounds.

As the rapid development of chemical substances, we look forward to future research findings about 1273-86-5

Reference£º
Article; Alizadeh; Khodaei; Kordestania; Beygzadeh; Journal of Molecular Catalysis A: Chemical; vol. 372; (2013); p. 167 – 174;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1273-86-5

1273-86-5, The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Under an N2 atmosphere, a mixture of secondary alcohol (0.5 mmol), primary alcohol (0.6 mmol), 1a (5 mol %), NaOH (0.1 mmol), 4 A molecular sieve (0.6 g), and toluene (1.5 mL) was added into a 25 mL Schlenk tube equipped with a stirring bar. The mixture was heated to 120 C under a slow and steady N2 flow for 24 h. After cooling to ambient temperature, 6 mL water was added and the aqueous solution extracted with ethyl acetate (3 x 5 mL). The combined extracts were dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude product purified on a short flash chromatography column.

1273-86-5, The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Zhang, Shi-Qi; Guo, Bin; Xu, Ze; Li, Hong-Xi; Li, Hai-Yan; Lang, Jian-Ping; Tetrahedron; vol. 75; 47; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 14024-18-1

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate

Name is Iron(III) acetylacetonate, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 14024-18-1, its synthesis route is as follows.,14024-18-1

Fe3O4 nanoparticles were prepared by the following synthetic procedure, which was based on our previous study [29]: the reaction was carried out in the 100 mL three-necked round-bottom flask equipped with a condenser and a thermometer. The heating was carried out by a heating mantle. Iron acetylacetonate (III) (1 mmol) and 1,2-hexadecanediol (3.0 mmol) as Fe3+ reducing agent were added into a mixture of oleic acid (15 mmol) and distilled oleylamine (15 mmol). The solution was maintained at 130 C for 30 min with vigorous stirring under a reduced atmosphere (ca. 200 Pa) for dissolution and removal of impurities such as water molecules and organic molecules with low boiling temperatures. In this phase, the solution color was dark brown. Then, the solution was heated to reaction temperatures of 200 C, 250 C, 280 C, and 300 C for 1 h, 3 h, and 6 h under a nitrogen atmosphere (1 atm.). The solution color changed to black. Finally, the solution was left to cool to room temperature by remove of the heat source. When the solution becomes hard or loses fluidity after cooling to room temperature, the resulting solidified solution was dissolved by adding 10 mL n-hexane before the following precipitation process. The iron oxide nanoparticles were precipitated by the addition of ethanol (70~80 mL) and were subsequently subjected to centrifugation (3000 g, 10 min).The precipitated nanoparticles were redispersed into n-hexane.

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate

Reference£º
Article; Nakaya, Masafumi; Nishida, Ryo; Muramatsu, Atsushi; Molecules; vol. 19; 8; (2014); p. 11395 – 11403;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 14024-18-1

14024-18-1, The synthetic route of 14024-18-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14024-18-1,Iron(III) acetylacetonate,as a common compound, the synthetic route is as follows.

A typical procedure for preparation of oil-soluble magnetite nanoparticles is briefly described as follows: first, 20 mL of diethylene glycol, 0.70 g (2 mmol) of iron (III) acetylacetonate, and 1.06 mL (3 mmol) of oleic acid were mixed in a 50 mL Teflon-lined stainless autoclave while magnetically stirring. Then, the autoclave was put into oven, kept at 180C for 5 h. After cooled to room temperature naturally, 40 mL ethanol was added to yield a black precipitate. The black Fe3O4 precipitate was separated by centrifuging at 10,000 rpm for 20 min, and re-dispersed in 10 mL of hexane or dried at 60C under vacuum for 24 h. (The as-prepared product was donated as SO1.) The as-synthesized Fe3O4 colloid in hexane is hydrophobic and stable for nearly a year, while the dried Fe3O4 sample can be stable for several months. The synthesis of water-soluble magnetite nanoparticles was carried out only by reacting an iron precursor, iron (III) acetylacetonate (Fe(acac)3), in the polyol medium (diethylene glycol) without oleic acid under the same reaction conditions. After cooling down to room temperature, 40 mL of ethyl acetate was added to the reaction solution resulted in a black precipitation of magnetite nanoparticles which was then separated from the solution by centrifuging at 10,000 rpm for 20 min. After washed with ethyl acetate for three times, the precipitation was re-dispersed in polar solvents such as ethanol and water for further investigation. The Fe3O4 solid productions could also be obtained by drying the precipitation at 60C under vacuum for 24 h. (The as-prepared product was donated as SW1.)

14024-18-1, The synthetic route of 14024-18-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Chen, Fenghua; Zhao, Taonan; Chen, Qingtao; Han, Lifeng; Fang, Shaoming; Chen, Zhijun; Materials Research Bulletin; vol. 48; 10; (2013); p. 4093 – 4099;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1273-86-5

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenemethanol,1273-86-5,Molecular formula: C11H3FeO,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: 1.1 mmol of triethylamine was added to a stirred mixture of 1.0 mmol of metallocene alcohol (7, 8, 12) or 0.45 mmol of ferrocene diol (10, 11) and 1.0 mmol of 4,5-dichloroisothiazole- or 5-arylisoxazole-3-carbonyl chloride in 50 mL of diethyl ether at 20-23C. The reaction mixture was stirred at that temperature during 24 h. The precipitated triethylamine hydrochloride was filtered off and washed with diethyl ether (5 ¡Á 10 mL). The filtrate was washed with 10 % aqueous NaCl and 5 % aqueous NaHCO3. The solvent was removed, and the residue was recrystallized from a benzene-hexane (2 : 1) mixture (14, 15, 19, and 20) or from hexane (16,17, 21, and 22). 3,4,4-Trichloro-1-cymantrenylbut-3-en-1-yl 4,5-dichloroisothiazole-3-carboxylate 18 was obtained as a viscous oil and was used without further purification.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Potkin; Dikusar; Kletskov; Petkevich; Semenova; Kolesnik; Zvereva; Zhukovskaya; Rosentsveig; Levkovskaya; Zolotar; Russian Journal of General Chemistry; vol. 86; 2; (2016); p. 338 – 343; Zh. Obshch. Khim.; vol. 86; 2; (2016); p. 338 – 343,6;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenemethanol

With the complex challenges of chemical substances, we look forward to future research findings about 1273-86-5,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenemethanol, and cas is 1273-86-5, its synthesis route is as follows.,1273-86-5

General procedure: A mixture of aryl alcohol (1 mmol) and [FemDMMerA]Y (100 mg) in solvent(5 mL) was refluxed in oil bath. After completion of the reaction as monitored byTLC, the reaction mixture was filtered to remove insoluble SILP catalyst.Evaporation of solvent in vacuuo followed by column chromatography over silicagel using petroleum ether/ethyl acetate (95:5 v/v) afforded pure aldehydes.

With the complex challenges of chemical substances, we look forward to future research findings about 1273-86-5,belong iron-catalyst compound

Reference£º
Article; Kurane, Rajanikant; Bansode, Prakash; Khanapure, Sharanabasappa; Salunkhe, Rajashri; Rashinkar, Gajanan; Research on Chemical Intermediates; vol. 42; 12; (2016); p. 7807 – 7821;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion