Downstream synthetic route of Iron(III) acetylacetonate

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Iron(III) acetylacetonate, 14024-18-1

14024-18-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Iron(III) acetylacetonate, cas is 14024-18-1,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Fe(acac)3 (706 mg, 2 mmol), 1,2-dodecanediol (2.023 g,10 mmol), oleic acid (1.695 g, 6 mmol), oleylamine (1.605 g,6 mmol), and diphenyl ether (20 mL) were mixed and magnetically stirred under a flow of argon. The mixture was heated to 200Cfor 30 min and then heated to 280C for another 30 min. Theblack-brown mixture was cooled to room temperature under argon atmosphere. A black material was precipitated with ethanoland separated via centrifugation. The black product was dissolvedin hexane, precipitated with ethanol, centrifuged to remove the solvent, and dispersed into hexane. Fe3O4nanoparticles wereobtained after evaporation of hexane at room temperature (yield:31%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Iron(III) acetylacetonate, 14024-18-1

Reference£º
Article; Yuan, Weizhong; Shen, Jin; Li, Lulin; Liu, Xu; Zou, Hui; Carbohydrate Polymers; vol. 113; (2014); p. 353 – 361;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion