As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Aminoferrocene, and cas is 1273-82-1, its synthesis route is as follows.
To a mixture of methyl4-chloro-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (100 mg, 0.410 mmoL), ferrocenylamine(114 mg, 0.410 mmoL), and p-toluenesulfonic acid monohydrate (15 mg, 0.082 mmoL) was addedanhydrous 1,4-dioxane (1 mL) under an argon atmosphere. The resulting mixture was heated to 150 Cunder microwave irradiation and stirred for 30 min. The resulting mixture was concentrated underreduced pressure. The resulting residue was purified by column chromatography (n-hexane/ethylacetate, 100:00¡À40:60). The appropriate fractions were combined and concentrated under reducedpressure to give methyl-5-methyl-4-(ferrocenylamino)thieno[2,3-d]pyrimidine-6-carboxylate (2) asan orange solid (105 mg, 63%). 1H NMR (d6-DMSO, 500 MHz): = 8.53 (1H, s), 8.02 (1H, s),4.82 (2H, s), 4.16 (5H, s), 4.07 (2H, s), 3.84 (3H, s), 3.02 (3H, s). 13C NMR (d6-DMSO, 126 MHz): = 171.0, 153.5, 130.1, 125.4, 125.3, 124.3, 124.1, 96.1, 79.8, 69.2, 64.1, 61.1, 36.2, 28.7. HRMS-ESI (m/z):calc. for [C19H17FeN3O2S + H]+ = 407.2712, observed = 407.2716. Anal. Calc. (%) for C19H17FeN3O2S:C, 56.03; H, 4.21; N, 10.32. Found (%): C, 55.97; H, 4.19; N, 10.21.
1273-82-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1273-82-1 ,Aminoferrocene, other downstream synthetic routes, hurry up and to see
Reference£º
Article; Sansook, Supojjanee; Lineham, Ella; Hassell-Hart, Storm; Tizzard, Graham J.; Coles, Simon J.; Spencer, John; Morley, Simon J.; Molecules; vol. 23; 9; (2018);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion