New explortion of 1293-65-8

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1293-65-8

1293-65-8, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.1293-65-8, Name is 1,1′-Dibromoferrocene, molecular formula is C10Br2Fe. In a Article, authors is Shafir, Alexandr£¬once mentioned of 1293-65-8

Synthesis, structure, and properties of 1,1?-diamino- and 1,1?-diazidoferrocene

We report an improved synthesis of 1,1?-diaminoferrocene, employing the reduction of 1,1?-diazidoferrocene with H2-Pd/C, along with extensive characterization data for both compounds. Diaminoferrocene undergoes a reversible 1e- oxidation in CH3CN at a potential of -602 mV vs Fc0/+, one of the most negative redox potentials for a ferrocene derivative. The chemical reversibility of this process was confirmed by isolation of the stable, 17-electron [Fc(NH2)2]+ cation as PF6-, OTf-, and TCNE- salts. In the solid state, diaminoferrocene exists in two conformations: one with the NH2 groups eclipsed, and the other with the NH2 groups offset by one-fifth turn around the Cp-Fe-Cp axis. Diazidoferrocene, on the other hand, exhibits only the fully eclipsed conformation in the solid state. The Fe-Cp(centroid) vectors in the diazidoferrocene molecules are roughly aligned with the crystallographic c-axis, and the molecules form layers perpendicular to this axis. The compound is thermally unstable at elevated temperatures, and rapid heating above its melting point results in explosion.

Synthesis, structure, and properties of 1,1?-diamino- and 1,1?-diazidoferrocene

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1293-65-8

Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion