A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, 1273-86-5, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 1273-86-5, Name is Ferrocenemethanol, molecular formula is C11H3FeO. In a Article, authors is Radford£¬once mentioned of 1273-86-5
Dual-stream flow injection method for amplified electrochemical detection of ferrocene derivatives
A dual-stream flow injection method has been developed for electrochemical detection of ferrocene derivatives in flow streams. The method is based on a previously described electrochemical amplification method in which currents for analyte oxidation are enhanced by rapid analyte regeneration via a solution-phase electron exchange reaction with a sacrificial reagent. The use of two independent flow channels in the present method, one to carry the analyte and another to supply the sacrificial reagent, eliminates the necessity of spiking samples and calibration standards with sacrificial reagent to avoid injection transients. Hydrodynamic voltammograms were recorded for a series of injections of hydroxymethylferrocene (HMFc, a model ferrocene analyte) into the carrier stream in the presence and absence of ferrocyanide (which serves as sacrificial reagent) in the reagent stream. From these voltammograms an optimum detection potential for HMFc of +0.8 V versus Ag|AgCl|KClsat was selected. Two different concentrations of sacrificial reagent were tested for a range of HMFc concentrations between 1 ¡Á 10-3 and 1 ¡Á 10-8 M for which both unamplified and amplified peaks could be detected. An amplification factor of approximately 300 was obtained for a 1 ¡Á 10-8 M HMFc injection with 2 ¡Á 10-4 M ferrocyanide present in the reagent stream.
Dual-stream flow injection method for amplified electrochemical detection of ferrocene derivatives
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1273-86-5
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion