1273-94-5, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.1273-94-5, Name is 1,1′-Diacetylferrocene, molecular formula is C14H6FeO2. In a Article, authors is Schneemeyer, Lynn F.£¬once mentioned of 1273-94-5
n-Type Molybdenium Diselenide-Based Photoelectrochemical Cells: Evidence for Fermi Level Pinning and Comparison of the Efficiency for Conversion of Light to Electricity with Various Solvent/Halogen/Halide Combinations
Interfacial energetics for n-type MoSe2 (Eg = 1.4 eV, direct) and photoelectrochemical conversion of light to electrical energy in the presence of Xn-/X- (X = Cl, Br, I) have been characterized in CH3CN electrolyte solution.Data for MoSe2 in H2O/I3-/I- are included for comparison, along with a comparison of MoSe2-based cells with MoS2- (Eg = 1.7 eV, direct) based cells.Cyclic voltammetry for a set of reversible (at Pt electrodes) redox couples whose formal potential, <*>, spans a range -0.8 to +1.5 V vs.SCE has been employed to establish the interface energetics of MoSe2.For the redox couples having <*> more negative than ca. -0.1 V vs.SCE, we find reversible electrochemistry in the dark at n-type MoSe2.When <*> is somewhat positive of -0.1 V vs.SCE, we find that oxidation of the reduced form of the redox couple can be effected in an uphill sense by irradiation of the n-type MoSe2 with <*>Eg light; the anodic current peak is at more negative potential than at Pt for such situations.The extent to which the photoanodic current peak is more negative than at Pt is a measure of the output photovoltage for a given couple.For <*> more positive than ca. +0.7 V vs.SCE it would appear that this output photovoltage is constant at ca. 0.4 V.For a redox couple such as biferrocene (<*>(BF+/BF) = +0.3 V vs.SCE) we find a photoanodic current onset at ca. -0.2 V vs.SCE; a redox couple with <*> = 1.5 V vs.SCE shows an output photovoltage of 0.43 V under the same conditions.The ability to observe (i) photoeffects for redox reagents spanning a range of <*>‘s that is greater than the direct Eg and (ii) constant photovoltage for a range of <*>‘s evidences an important role for surface states or carrier inversion such that a constant amount of band bending (constant barrier height) is found for a couple having <*> more positive than ca. +0.7 V vs.SCE.Conversion of <*> light to electricity can be sustained in CH3CN solutions of Xn-/X- (X = Cl, Br, I) with an efficiency that is ordered Cl > Br > I where n-type MoSe2 is used as a stable photoanode.In aqueous solution n-type MoSe2 is not a stable anode in the presence of similar concentrations of Br2/Br- or Cl2/Cl-, showing an important role for solvent in thermodynamics for electrode decomposition.In CH3CN, efficiency for conversion of 632.8-nm light to electricity has been found to be up to 7.5percent for Cl2/Cl-, 1.4percent for Br2/Br-, and 0.14percent for I3-/I-.Differences among these redox systems are output voltage and short-circuit current, accounting for the changes in efficiency.In H2O, I3-/I- yields a stable n-type MoSe2-based photoelectrochemical cell with an efficiency for 632.8-nm light a little lower that for the CH3CN/Cl2/Cl- solvent/redox couple system.Data for MoS2-based cells in the CH3CN/Xn-/X- solvent/redox couple systems show that the efficiency again depends on X: Cl > Br >I. …
n-Type Molybdenium Diselenide-Based Photoelectrochemical Cells: Evidence for Fermi Level Pinning and Comparison of the Efficiency for Conversion of Light to Electricity with Various Solvent/Halogen/Halide Combinations
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1273-94-5
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion