Top Picks: new discover of 1273-86-5

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.category: iron-catalyst, you can also check out more blogs about1273-86-5

Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments. category: iron-catalyst. Introducing a new discovery about 1273-86-5, Name is Ferrocenemethanol

H2O2 detection by redox-based potentiometric sensors under biological environments

Hydrogen peroxide (H2O2) is an important target material for detecting biomolecules including acetylcholine (ACh), glutamate (Glu), and glucose. In this study, we report on H2O2 detection under biological environments based on the redox reaction. The redox potential change caused by the reaction between the electron mediators of ferrocenes and H2O2 catalyzed by horseradish peroxidase (HRP) was measured using a gold electrode connected to a source follower circuit. The mediators were either dissolved in sample solutions using ferrocenyl methanol (FcMeOH) or immobilized on the sensor surface in the form of 11-ferrocenyl-1- undecanethiol (11-FUT). H2O2 detection under biological environments was demonstrated in both samples. The overall outputs in the 11-FUT-immmobilzed electrodes were lower than those in the samples with dissolved FcMeOH. The detection range of H2O2 was from 10-5 to 10-3 M for the samples with dissolved FcMeOH, while it was from 10-4 to 10-2 M for the 11-FUT-immobilized electrodes. It was suggested that the oxidation of the mediators by H2O2 insufficiently took place in the 11-FUT-immobilized electrodes, leading to the lower outputs.

H2O2 detection by redox-based potentiometric sensors under biological environments

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.category: iron-catalyst, you can also check out more blogs about1273-86-5

Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion