Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Application of 1271-48-3. In my other articles, you can also check out more blogs about 1271-48-3
Application of 1271-48-3, A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 1271-48-3, Name is 1,1′-Ferrocenedicarboxaldehyde, molecular formula is C12H10FeO2. In a Article£¬once mentioned of 1271-48-3
Carboxylate anions binding and sensing by a novel tetraazamacrocycle containing ferrocene as receptort
A tetraazamacrocycle containing ferrocene moieties has been synthesized and characterized. The tetraprotonated form of this compound was evaluated as a receptor (R) for anion recognition of several substrates (S), Cl-, PF6-, HSO4-, H2PO 4- and carboxylates, such as p-nitrobenzoate (p-nbz -), phthalate (ph2-), isophthalate (iph2-) and dipicolinate (dipic2-). 1H NMR titrations in CD 3OD indicated that this receptor is not suitable for recognizing HSO4- and H2PO4-, but weakly binds p-nbz-, and strongly interacts with ph2-, dipic2-, and iph2- anions forming 1 : 2 assembled species. The largest beta2 binding constant was determined for ph 2-, followed by dipic2- and finally iph2-. The effect of the anionic substrates on the electron-transfer process of the ferrocene units of R was evaluated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in methanol solution and 0.1 mol dm-3 (CH 3)4NCl as the supporting electrolyte. Titrations of the receptor were undertaken by addition of anion solutions in their tetrabutylammonium or tetramethylammonium forms. The protonated ligand exhibits a reversible voltammogram, which shifts cathodically in the presence of the substrates. The data revealed kinetic constraints in the formation of the receptor/substrate entity for dipic2-, ph2- and iph 2- anions, but not for p-nbz-. In spite of the slow kinetics of assembled species formation with the ph2- substrate, this anion provides the largest redox-response when the supramolecular entity is formed, followed by dipic2-, iph2- and finally p-nbz – anions. This trend is in agreement with the 1H NMR results and the values of the binding constants. Single crystal X-ray structures of the receptor with PF6-, ph2-, iph 2- and p-nbz- were carried out and showed that supermolecules with a RS2 stoichiometry are formed with the first three anions, but RS4 with p-nbz-. In all cases the binding occurs outside the macrocyclic cavity via N-H … O=C hydrogen bonds for carboxylate anions and N-H … F hydrogen bonds for the PF 6- anion, which is in agreement with the solution results. The macrocyclic framework adopts different conformations in order to interact with each substrate having Fe … Fe intramolecular distances ranging from 10.125(14) to 12.783(15) A. The Royal Society of Chemistry 2005.
Carboxylate anions binding and sensing by a novel tetraazamacrocycle containing ferrocene as receptort
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Application of 1271-48-3. In my other articles, you can also check out more blogs about 1271-48-3
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion