Extended knowledge of 1,1′-Diacetylferrocene

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1273-94-5

Synthetic Route of 1273-94-5, Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.1273-94-5, Name is 1,1′-Diacetylferrocene, molecular formula is C14H6FeO2. In a article£¬once mentioned of 1273-94-5

Study of ferrocenyl-substituted Co2(CO)6-bispropargylic alcohol complexes as substrates for the formation of chains and macrocycles

Treatment of [Fc-1-R1-1?-R2] (R1 = H, R2 = CH(O); R1 = H, R2 = CMe(O); R1 = R2 = CMe(O)) with LiC{triple bond, long}CCH2OLi (prepared in situ from HC{triple bond, long}CCH2OH and n-BuLi) affords the ferrocenyl-substituted but-2-yne-1,4-diol compounds of general formula [Fc-1-R1-1?-{CR(OH)C{triple bond, long}CCH2OH}] (R1 = R = H (1a); R1 = H, R = Me (1b); R1 = CMe(O), R = Me (1c)) in low to high yields, respectively (where Fc = Fe(eta5-C5H4)2). In the case of the reactions of [Fc-1-R1-1?-R2] (R1 = H, R2 = CH(O); R1 = R2 = CMe(O)), the by-products [Fc-1-R1-1?-{CR(OH)(CH2)3CH3}] (R1 = R = H (2a); R1 = CMe(O), R = Me (2c)) along with minor quantities of [Fc-1,1?-{CMe(OH)(CH2)3CH3}2] (3) are also isolated; a hydrazide derivative of dehydrated 2c, [1-(CMe{double bond, long}CHCH2CH2CH3)-1?-(CMe{double bond, long}NNH-2,4-(NO2)2C6H3)] (2c?), has been crystallographically characterised. Interaction of 1 with Co2(CO)8 smoothly generates the alkyne-bridged complexes [Fc-1-R1-1?-{Co2(CO)6-mu-eta2-CR(OH)C{triple bond, long}CCH2OH}] (R1 = R = H (4a); R1 = H, R = Me(4b); R1 = CMe(O), R = Me (4c)) in good yield. Reaction of 4a with PhSH, in the presence of catalytic quantities of HBF4 ¡¤ OEt2, gives the mono- [Fc-1-H-1?-{Co2(CO)6-mu-eta2-CH(SPh)C{triple bond, long}CCH2OH}] (5) and bis-substituted [Fc-1-H-1?-{Co2(CO)6-mu-eta2-CH(SPh)C{triple bond, long}CCH2SPh}] (6) straight chain species, while with HS(CH2)nSH (n = 2,3) the eight- and nine-membered dithiomacrocylic complexes [Fc-1-H-1?-{cyclo-Co2(CO)6-mu-eta2-CH(S(CH2)n-)C{triple bond, long}CCH2S-}] [n = 2 (7a), n = 3 (7b)] are afforded. By contrast, during attempted macrocyclic formation using 4b and HSCH2CH2OCH2CH2SH dehydration occurs to give [Fc-1-H-1?-{Co2(CO)6-mu-eta2-C({double bond, long}CH2)C{triple bond, long}CCH2OH}] (8). Single crystal X-ray diffraction studies have been reported on 2c?, 4b, 4c, 7b and 8.

Study of ferrocenyl-substituted Co2(CO)6-bispropargylic alcohol complexes as substrates for the formation of chains and macrocycles

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1273-94-5

Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Awesome Chemistry Experiments For 1,1′-Ferrocenedicarboxaldehyde

One of the oldest and most widely used commercial enzyme inhibitors is aspirin, Product Details of 1271-48-3, which selectively inhibits one of the enzymes involved in the synthesis of molecules that trigger inflammation. you can also check out more blogs about 1271-48-3

One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, Product Details of 1271-48-3, such as the rate of change in the concentration of reactants or products with time.In a article, mentioned the application of 1271-48-3, Name is 1,1′-Ferrocenedicarboxaldehyde, molecular formula is C12H10FeO2

Long-range electronic connection in picket-fence like ferrocene-porphyrin derivatives

The effects of a direct connection between ferrocene and porphyrin units have been thoroughly investigated by electrochemical and spectroscopic methods. These data not only reveal that substitution of the porphyrin macrocycle by one, two, three or four ferrocenyl groups strongly affects the electronic properties of the porphyrin and ferrocenyl moieties, they also clearly demonstrate that the metallocene centres are “connected” through the porphyrin-based electronic network. The dynamic properties of selected ferrocene-porphyrin conjugates have been investigated by VT NMR and metadynamic calculations. 1,3-Dithiolanyl protecting groups have been introduced on the upper rings of the ferrocene fragments to allow a straightforward and easy access to redox active picket-fence porphyrins. X-ray diffraction analyses of the zinc(ii) 5-[1?-[2-(1,3-dithiolanyl)]ferrocenyl]-10,15,20-tri(p-tolyl)porphyrin and 5,15-bis[1?-[2-(1,3-dithiolanyl)]ferrocenyl]-10,20-bis(p-tolyl)porphyrin complexes reveal the existence of S-Zn bonds involved in supramolecular arrays. The solid state analysis of the trans-5,15-di-(1?-(formyl)ferrocenyl)-10, 20-di-(p-tolyl)-porphyrinatozinc(ii) complex, obtained by deprotection of the dithiolane substituted analog, is conversely found in the crystal lattice as a monomer exhibiting a hexacoordinated zinc metal centre. The Royal Society of Chemistry 2013.

Long-range electronic connection in picket-fence like ferrocene-porphyrin derivatives

One of the oldest and most widely used commercial enzyme inhibitors is aspirin, Product Details of 1271-48-3, which selectively inhibits one of the enzymes involved in the synthesis of molecules that trigger inflammation. you can also check out more blogs about 1271-48-3

Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Discovery of 1,1′-Dibenzoylferrocene

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 12180-80-2

Related Products of 12180-80-2, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.12180-80-2, Name is 1,1′-Dibenzoylferrocene, molecular formula is C24H10FeO2. In a Article£¬once mentioned of 12180-80-2

Efficient regio- and diastereo-controlled synthesis of 1,1?- and 1,1?,2,2?-functionalised ferrocenes and the formation of 2-oxa[3]ferrocenophanes

The synthesis of a C2 symmetric 1,1? ,2,2?-tetrasubstituted ferrocene system was discussed. The route involved the reduction of ferrocenyl carbonyl compounds which gave access to a range of alcohols, alkenes, alkanes, ethers, and 2-oxa[3]ferrocenophanes depending on the precise conditions used. The loss of optical activity of 1,1?-bis(hydroxymethyl)ferrocenes and 1,1?-bis(hydroxymethyl)ruthenocenes, which had been prepared by asymmetric reduction, was demonstrated in an acidic medium by extensive 1H NMR studies.

Efficient regio- and diastereo-controlled synthesis of 1,1?- and 1,1?,2,2?-functionalised ferrocenes and the formation of 2-oxa[3]ferrocenophanes

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 12180-80-2

Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 16009-13-5

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. Product Details of 16009-13-5, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 16009-13-5, in my other articles.

One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, Product Details of 16009-13-5, such as the rate of change in the concentration of reactants or products with time.In a article, mentioned the application of 16009-13-5, Name is Hemin, molecular formula is C34H32ClFeN4O4

Inhibition of the heme-induced hemolysis of red blood cells by thechlorite-based drug WF10

Excessive release of hemoglobin from red blood cells markedly disturbs the health status of patients due to cytotoxic effects of free hemoglobin and heme. The latter component is able to initiate novel hemolytic events in unperturbed red blood cells. We modeled this process by incubation of ferric protoporphyrin IX with freshly isolated red blood cells from healthy volunteers. The heme-induced hemolysis was inhibited in a concentration-dependent manner by the chlorite-based drug WF10, whereby the hemolysis degree was totally abolished at a molar ratio of 1:2 between chlorite and heme. Upon incubation of heme with WF10, the ultraviolet-visible spectrum changed, whereas the release of iron from heme and the appearance of fluorescent breakdown products of the porphyrin ring were negligible at this ratio, but increased with increasing excess of chlorite over heme. Thus, inhibition of hemolysis by WF10 takes already place at those chlorite concentrations, where no degradation of the porphyrin ring occurs. As WF10 is applied in form of an intravenous infusion to patients with severe inflammatory states, these data support the hypothesis that the beneficial WF10 effects are closely associated with inactivation of free heme.

Inhibition of the heme-induced hemolysis of red blood cells by thechlorite-based drug WF10

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. Product Details of 16009-13-5, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 16009-13-5, in my other articles.

Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory:new discovery of Vinylferrocene

One of the oldest and most widely used commercial enzyme inhibitors is aspirin, COA of Formula: C12H3Fe, which selectively inhibits one of the enzymes involved in the synthesis of molecules that trigger inflammation. you can also check out more blogs about 1271-51-8

One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, COA of Formula: C12H3Fe, such as the rate of change in the concentration of reactants or products with time.In a article, mentioned the application of 1271-51-8, Name is Vinylferrocene, molecular formula is C12H3Fe

Asymmetric Iron-Catalyzed C?H Alkylation Enabled by Remote Ligand meta-Substitution

Highly enantioselective iron-catalyzed C?H alkylations by inner-sphere C?H activation were accomplished with ample scope. High levels of enantiocontrol proved viable through a novel ligand design that exploits a remote meta-substitution on N-heterocyclic carbenes within a facile ligand-to-ligand H-transfer C?H cleavage.

Asymmetric Iron-Catalyzed C?H Alkylation Enabled by Remote Ligand meta-Substitution

One of the oldest and most widely used commercial enzyme inhibitors is aspirin, COA of Formula: C12H3Fe, which selectively inhibits one of the enzymes involved in the synthesis of molecules that trigger inflammation. you can also check out more blogs about 1271-51-8

Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of Ferrocenemethanol

Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 1273-86-5

1273-86-5, Name is Ferrocenemethanol, belongs to iron-catalyst compound, is a common compound. Computed Properties of C11H3FeOIn an article, once mentioned the new application about 1273-86-5.

Electrochemical sensing based on carbon nanoparticles: A review

The emergence of nanoscience and nanotechnology has opened up new horizons to researchers. In this regard, carbon nanomaterials are considered as the cornerstone of numerous investigations. Among various carbon nanostructures, ?Carbon nanoparticles (CNPs)? have attracted a great deal of attention during the past few years due to their unique properties such as high surface area, non-toxicity, biocompatibility as well as simple and low-cost synthetic procedures via environmentally friendly routes. Thanks to these properties along with their interesting optical behavior, CNPs have found diverse applications in the fields of bioimaging, nanomedicine, photo/electro-catalysis, and bio/chemical sensing. Moreover, their fascinating electrochemical properties including high effective surface area, excellent electrical conductivity, electrocatalytic activity as well as high porosity and adsorption capability, turn them to potential candidate for electrochemical purposes particularly sensing. The recent article, comprehensively reviews the usage of CNPs in design and construction of electrochemical sensors. It starts with a brief introduction of their properties and synthesis methods, then presents the electrode modification procedures, and finally come up with an overview of the proposed electrochemical sensing platforms based on CNPs. We hope that the recent review article will illuminate new lights in the minds of researchers active in this area and incorporates to promote the activities in this field of research.

Electrochemical sensing based on carbon nanoparticles: A review

Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 1273-86-5

Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some scientific research about 1273-86-5

I hope this article can help some friends in scientific research. I am very proud of our efforts over the past few months and hope to 1273-86-5, help many people in the next few years.Recommanded Product: Ferrocenemethanol

In heterogeneous catalysis, the catalyst is in a different phase from the reactants. Recommanded Product: Ferrocenemethanol, At least one of the reactants interacts with the solid surface in a physical process called adsorption in such a way. 1273-86-5, name is Ferrocenemethanol. In an article£¬Which mentioned a new discovery about 1273-86-5

Novel Porous Crystals with Macrocycle-Based Well-Defined Molecular Recognition Sites

ConspectusMolecular recognition is one of the fundamental events in biological systems, as typified by enzymes that enable highly efficient and selective catalytic reactions through precise recognition of substrate(s) and cofactor(s) in the binding pockets. Chemists therefore have long been inspired by such excellent molecular systems to develop various synthetic receptors with well-defined binding sites. Their effort is currently being devoted to the construction of not only molecular receptors but also self-assembled host compounds possessing connected cavities (pores) in the crystalline frameworks to rationally design functional porous materials capable of efficiently adsorbing molecules or ions at binding sites on the pore walls. However, it is still challenging to design multiple distinct binding sites that are precisely arranged in an identical framework, which is currently one of the most important targets in this field to realize elaborate molecular systems beyond natural enzymes.In this Account, we provide an overview of porous crystals with well-defined molecular recognition sites. We first show several strategies for arranging macrocyclic binding sites in crystalline frameworks such as metal-organic frameworks, porous molecular crystals, and covalent organic frameworks. Porous metal-macrocycle frameworks (MMFs) that we have recently developed are then described as a new type of porous crystals with well-defined multiple distinct binding sites. The MMF-1 crystal, which was developed first and is composed of four stereoisomers of helical PdII 3-macrocycle complexes, has one-dimensional channels with dimensions of 1.4 nm ¡Á 1.9 nm equipped with enantiomeric pairs of five distinct binding sites. This structural feature of MMF-1 therefore allows for site-selective and asymmetric arrangement of not only single but also multiple guest molecules in the crystalline channels based on molecular recognition between the guests and the multiple binding sites. This characteristic was also exploited to develop a heterogeneous catalyst by non-covalently immobilizing an organic acid on the pore surface of MMF-1 to conduct size-specific catalytic reactions. In addition, adsorption of a photoreactive substrate in MMF was found to switch the photoreaction pathway to cause another reaction with the aid of photoactivated PdII centers arranged on the pore walls. Furthermore, the dynamic, transient process of molecular arrangement incorporated in MMF-1 has been successfully visualized by single-crystal X-ray diffraction analysis. The formation of homochiral MMF-2 composed of only (P)-or (M)-helical PdII 3-macrocycle complexes is also described. Thus, macrocycle-based porous crystals with a complex structure such as MMFs are expected to serve as novel porous materials that have great potential to mimic or surpass enzymes by utilizing well-defined multiple binding sites capable of spatially arranging a catalyst, substrate, and effector for highly selective and allosterically tunable catalytic reactions, which can be also visualized by crystallographic analysis because of their crystalline nature.

Novel Porous Crystals with Macrocycle-Based Well-Defined Molecular Recognition Sites

I hope this article can help some friends in scientific research. I am very proud of our efforts over the past few months and hope to 1273-86-5, help many people in the next few years.Recommanded Product: Ferrocenemethanol

Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Can You Really Do Chemisty Experiments About 1293-65-8

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Electric Literature of 1293-65-8. In my other articles, you can also check out more blogs about 1293-65-8

Electric Literature of 1293-65-8, A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 1293-65-8, Name is 1,1′-Dibromoferrocene, molecular formula is C10Br2Fe. In a Article£¬once mentioned of 1293-65-8

Platinum complexes of a borane-Appended Analogue of 1,1′-Bis(diphenylphosphino)ferrocene: Flexible borane coordination modes and in situ vinylborane formation

A bis(phosphine)borane ambiphilic ligand, [Fe(h5-C5H4PPh2)(h5-C5H4PtBu{C6H4 (BPh2)-ortho})] (FcPPB), in which the borane occupies a terminal position, was prepared. Reaction of FcPPB with tris(norbornene)platinum(0) provided [Pt(FcPPB)] (1) in which the arylborane is h3BCC-coordinated. Subsequent reaction with CO and CNXyl (Xyl=2,6-dimethylphenyl) afforded [PtL(FcPPB)] {L=CO (2) and CNXyl (3)} featuring h2BC-And h1B-Arylborane coordination modes, respectively. Reaction of 1 or 2 with H2 yielded [PtH(m-H)(FcPPB)] in which the borane is bound to a hydride ligand on platinum. Addition of PhC2H to [Pt(FcPPB)] afforded [Pt(C2Ph)(m-H)(FcPPB)] (5), which rapidly converted to [Pt(FcPPB’)] (6; FcPPB’=[Fe(h5-C5H4PPh2)(h5- C5H4PtBu{C6H4 (BPh-CPh=CHPh-Z)-ortho}]) in which the newly formed vinylborane is h3BCC-coordinated. Unlike arylborane complex 1, vinylborane complex 6 does not react with CO, CNXyl, H2 or HC2Ph at room temperature.

Platinum complexes of a borane-Appended Analogue of 1,1′-Bis(diphenylphosphino)ferrocene: Flexible borane coordination modes and in situ vinylborane formation

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Electric Literature of 1293-65-8. In my other articles, you can also check out more blogs about 1293-65-8

Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extended knowledge of 1273-94-5

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Application of 1273-94-5. In my other articles, you can also check out more blogs about 1273-94-5

Application of 1273-94-5, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Article, and a compound is mentioned, 1273-94-5, 1,1′-Diacetylferrocene, introducing its new discovery.

beta-Keto phosphines derived from ferrocene. Syntheses and structures of (L1) and trans-

The keto-phosphines (L1), <(Ph2PCH2C(O)(eta5-C5H4))2Fe> (L2) and <(Ph2PCH2C(O)(eta5-C5H4)C(O)CH3)> (L3) were respectively prepared by the reaction of Ph2PCl with the lithium enolates derived from acetylferrocene for L1, and 1,1′-bis(acetyl)ferrocene for L2 and L3.Ligand L1 crystallizes in the space group P1 with a 8.526(2), b 10.915(3), c 12.822(3) Angstroem, alpha 63.75(2), beta 69.04(2), gamma 70.77(2) deg, V 978.4 Angstroem3 and Z 2.The structure was solved and refined to R=0.034 and RW=0.042.The C5-rings are eclipsed (3.2 deg) and the plane of the keto group forms a dihedral angle of 13.1 deg with the C5H4 plane.In the complexes cis- and trans- (cis-1 and trans-1), <(o-C6H4CH2NMe2)PdClL1> (2), cis- (3), and (4) the phosphine ligand(s) behave as P-monodentate(s).The structure of trans-1 has been determined by X-ray diffraction at -145 deg C.The complex crystallizes in the monoclinic space group P21/c with a 10.622(7), b 12.647(7), c 15.59(1) Angstroem, beta 103.20(6) deg, V 2039 Angstroem3 and Z=2.The structure was solved and refined to R=0.037 and RW=0.053.The palladium atom lies on a centre of symmetry and the Pd-P and Pd-Cl bond lengths are respectively 2.314(1) and 2.287(1) Angstroem.The C5-rings of each ligand are slightly staggered (10.5 deg) and, as for L1, each keto group is almost parallel to the C5H4 plane (dihedral angle 8.9 deg).For the complex BF4, NMR and IR solution spectroscopy has shown that there is a dynamic exchange between chelating and P-monodentate L1.The possibility of using L2 as a binucleating ligand was demonstrated by the preparation of the trinuclear complex <((C10H8N)PdCl)2(mu-L2-P,P')> (6).The enolato complexes cis- (M=Pd (7), M=Pt (8)), and <(o-C6H4CH2NMe2)Pd(Ph2PCH=C(O)(eta5-C5H4)Fe(eta5-C5H5))> (9) were prepared in high yield by the reaction of NaH with complexes 1, 3, and 2, respectively.Complex 9 reacts with dimethylacetylenedicarboxylate to yield the alkenyl complex <(o-C6H4CH2NMe2)Pd(Ph2PCH(MeO2CC=CCO2Me))> (10), resulting from carbon-carbon coupling between the P bound enolate-carbon atom and the alkyne.All the complexes were characterized by elemental analysis, and 1H and 31P(1H) NMR and IR spectroscopy.

beta-Keto phosphines derived from ferrocene. Syntheses and structures of (L1) and trans-

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Application of 1273-94-5. In my other articles, you can also check out more blogs about 1273-94-5

Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1273-94-5

Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 1273-94-5

1273-94-5, Name is 1,1′-Diacetylferrocene, belongs to iron-catalyst compound, is a common compound. COA of Formula: C14H6FeO2In an article, once mentioned the new application about 1273-94-5.

Synthesis, characterization and antitumor activities of 1,1′-diacetylferrocene dihydrazone containing a salicylaldehyde moiety and its complexes with pd(II) and pt(II)

A ferrocenyl ligand was prepared from condensation of 1,1′- diacetylferrocene dihydrazone with salicylaldehyde. Ligand forms 1:1 complexes with Pd(II) and Pt(II) in good yield. Characterization of the ligand and complexes was carried out using elemental analysis, infrared, 1H nuclear magnetic resonance and electronic absorption spectra. Anticancer activity of the prepared ligand and its complexes against human breast cancer cell line MCF-7 was determined, and the results were compared with the activity of the commonly used anticancer drug cisplatin. The results suggested that the prepared compounds possess significant antitumor activity comparable to the activity of cisplatin and may be potent anticancer agents for inclusion in modern clinical trials.

Synthesis, characterization and antitumor activities of 1,1′-diacetylferrocene dihydrazone containing a salicylaldehyde moiety and its complexes with pd(II) and pt(II)

Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 1273-94-5

Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion