Reference of 1273-94-5, A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 1273-94-5, Name is 1,1′-Diacetylferrocene, molecular formula is C14H6FeO2. In a Article£¬once mentioned of 1273-94-5
Structural features of lithio[3]ferrocenophane systems bearing stabilizing dimethylamino substituents
Treatment of the a-dimethylamino[3]ferrocenophane derivative 3 with n-butyllithium results in a directed o-metalation at the adjacent Cp ring of the ferrocene unit to selectively yield the (R*,R*,p-S*) diastereomer 4. Similarly, lithiation of rac-12 gives (R*,p-S*)-13. Both these compounds form mesc-type dimers in the crystal that feature a central C2Li2 four-membered-ring moiety. Compound 13 crystallizes with excess n-butyllithium to form a (13-n-BuLi) dimer that was also characterized by X-ray diffraction. Directed lithiation of the nonbridged ferrocene derivative l-(dimethylaminobenzyl)ferrocene (16) with tertbutyllithium resulted in an opposite stereoselectivity to yield (R*,p-R*)-17, which forms a chiral dimeric structure in the solid state, as was revealed by its X-ray crystal structure analysis.
Structural features of lithio[3]ferrocenophane systems bearing stabilizing dimethylamino substituents
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Reference of 1273-94-5. In my other articles, you can also check out more blogs about 1273-94-5
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion