One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, Recommanded Product: 1,1′-Ferrocenedicarboxaldehyde, such as the rate of change in the concentration of reactants or products with time.In a article, mentioned the application of 1271-48-3, Name is 1,1′-Ferrocenedicarboxaldehyde, molecular formula is C12H10FeO2
Highly efficient iridium catalysts based on C2-symmetric ferrocenyl phosphinite ligands for asymmetric transfer hydrogenations of aromatic ketones
A series of chiral modular C2-symmetric ferrocenyl phosphinite ligands have been synthesized in good yields by using 1,1?-ferrocenedicarboxyaldehyde and various amino alcohols as starting materials, and applied in the iridium(III)-catalyzed asymmetric transfer hydrogenations of aromatic ketones to give the corresponding secondary alcohols with good enantioselectivities and reactivities using 2-propanol as the hydrogen source (up to 98% ee and 99% conversion). The substituents on the backbone of the ligands were found to have a significant effect on both the activity and enantiomeric excess. The structures of these complexes have been clarified by a combination of multinuclear NMR spectroscopy, IR spectroscopy, and elemental analysis.
Highly efficient iridium catalysts based on C2-symmetric ferrocenyl phosphinite ligands for asymmetric transfer hydrogenations of aromatic ketones
Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. Recommanded Product: 1,1′-Ferrocenedicarboxaldehyde, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 1271-48-3, in my other articles.
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion