Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments. Quality Control of Ferrocenemethanol. Introducing a new discovery about 1273-86-5, Name is Ferrocenemethanol
Metal complexes of biologically important ligands. CLXVI [1] metal complexes with ferrocenylmethylcysteinate and 1,1?-ferrocenylbis- (methylcysteinate) as ligands
A series of complexes of transition metal ions (Cr3+, Mn 2+, Co2+, Ni2+, Cu2+, Zn 2+) and of lanthanide ions (La3+, Nd3+, Gd 3+, Dy3+, Lu3+) with the anions of ferrocenylmethyl-L-cysteine [(C5H5)Fe(C5H 4CH(R)SCH2CH(NH3+)CO 2-] (L1) and with the dianions of 1,1?-ferrocenylbis(methyl-L-cysteine) [Fe(C5H 4CH(R)SCH2CH(NH3+) CO 2-)2] (R = H, Me, Ph) (L2) as N,O,S-donors were prepared. With the monocysteine ferrocene derivative L 1 as ligands complexes [MIIL12] or [CrIIIL12]Cl type complexes are formed whereas the bis(cysteine) ligand L2 yields insoluble complexes of type [ML2]n, presumably as coordination polymers. The magnetic moments of [MnIIL2]n, [PrIIIL 2]n(OH)n and [DyIIIL 2]n(OH)n exhibit “normal” paramagnetism.
Metal complexes of biologically important ligands. CLXVI [1] metal complexes with ferrocenylmethylcysteinate and 1,1?-ferrocenylbis- (methylcysteinate) as ligands
Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Quality Control of Ferrocenemethanol, you can also check out more blogs about1273-86-5
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion