Electric Literature of 1273-86-5, Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. 1273-86-5, Name is Ferrocenemethanol, molecular weight is 206.99. In an Article£¬once mentioned of 1273-86-5
Synthesis of citric-acid-based dendrimers decorated with ferrocenyl groups and investigation of their electroactivity
Fc (ferrocene)-functionalized citric acid dendrimers were successfully synthesized via the reaction of citric acid dendrimers with ferrocene methanol using dicyclohexylcarbodiimide. ClOC?PEG?COCl was used as the core, and the related dendrimers were synthesized divergently. Subsequently, each generation was functionalized with ferrocene methanol. The obtained Fc-dendrimers were characterized by 1H NMR and FTIR spectroscopy. We have studied the relocation of electrons around the peripheries of dendrimers and between their redox terminals and electrodes by studies of the electrochemistry of dendrimers awarding metallocenes as functional?s groups, because these compounds can be stabilized together their oxidized and their reduced states. In addition, the voltammograms of each Fc-functionalized generation were studied and the influence of scan rate, solvent, and [Fe] unit and the concentration of the Fc-dendrimers were investigated.
Synthesis of citric-acid-based dendrimers decorated with ferrocenyl groups and investigation of their electroactivity
Therefore, this conceptually novel strategy might open impressive avenues to establish green and sustainable chemistry platforms. In my other articles, you can also check out more blogs about 1273-86-5
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion