Reference of 1271-48-3, In heterogeneous catalysis, catalysts provide a surface to which reactants bind in a process of adsorption. In homogeneous catalysis, catalysts are in the same phase as the reactants. In a document type is Article, and a compound is mentioned, 1271-48-3, name is 1,1′-Ferrocenedicarboxaldehyde, introducing its new discovery.
Reaction of ferrocenecarboxaldehyde 13 and its vinylogue, (E,E)-1-ferrocenyl-4-formyl-1,3-butadiene (16), with nitrofluorenes as CH-acids, results in push-pull compounds of the type Fc-pi-fluorene (8a-g, 12a-e). Similar reaction with bifunctional ferrocene and ruthenocene dicarboxaldehydes results, depending on the fluorene structure, in the products of mono- or di-condensation, OHC-Fc-CH=fluorene (11d,e) or fluorene=CH-Fc-CH=fluorene and fluorene=CH-Rc-CH=fluorene (9a-c, 10a-c). Intramolecular charge transfer (ICT) in compounds 8 results in lowering the rotation barrier around the CH=fluorene double bond and easy E-Z isomerisation in solution. Cyclic voltammetry (CV) experiments show a reversible single-electron oxidation of Fc-CH=fluorenes (8) yielding the cation and two reversible single-electron reduction waves yielding the radical anion and dianion (for 8a-e) which merge into one two-electron reduction wave for 8f-h. ICT was also manifested in the electron absorption spectra of 8-12, and energies of ICT (as well as reduction potentials in CV) were found to display excellent correlation (r?0.99) with Hammett-type substituents constants (sigmap-) in the fluorene moiety. Compounds 8-12 show solvatochromism [8a: lambdaICT=604.5 nm (acetonitrile), 622.5 nm (1,2-dichloroethane)], with, however, no quantitative regularities for 10 solvents of different polarity. Bathochromic shifts of 40-83 nm and an increase in the intensity of ICT bands were observed with lengthening of the pi-bridge between ferrocene and fluorene moieties (8?12) whereas substitution of the ferrocene unit in 9 by the ruthenocene unit (10) resulted to a hypsochromic shift of ca. 100 nm due to decreasing donor ability of the latter metallocene fragment. Acceptor 8a was found to sensitise the photoconductivity of poly-N-(2,3-epoxypropyl)carbazole showing moderate holographic response of the materials. Molecular and crystal structures for ferrocene derivatives 8a, 8g, and 11d were determined by single-crystal X-ray diffraction. Tetranitro derivative 8a shows substantial distortion, caused by steric repulsion between the nitro groups in positions 4 and 5, which precludes the formation of stacks, and pairs of fluorene moieties contact face-to-face (interplanar distance 3.8 A?). In di- and trinitro derivatives 8g and 11d the fluorene moieties are more planar and their crystal packing motifs are similar: fluorene moieties form good stacks, parallel to the x-axis in 8g and the y-axis in 11d, with interplanar separations between fluorene moieties of 3.35-3.36 A? for 8g and alternate separations of 3.52 and 3.55 A? for 11d.
Electron acceptors of the fluorene series: Part 12. 9-(Metalloceneylidene)nitrofluorene derivatives of Fc-NF, NF-Fc-NF, and NF-Rc-NF types, and the vinylogues Fc-pi-NF: Synthesis, characterisation, intramolecular charge transfer, redox properties and X-ray structures for three fluorene-ferrocene derivatives
The result showed that such a combination of chemo- and biocatalysis improved the catalytic yield more than two times compared with that of sole metal catalysis. We will look forword to the important role of 1271-48-3, and how the biochemistry of the body works.Reference of 1271-48-3
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion