Extracurricular laboratory:new discovery of 1271-48-3

Therefore, this conceptually novel strategy might open impressive avenues to establish green and sustainable chemistry platforms. In my other articles, you can also check out more blogs about 1271-48-3

Synthetic Route of 1271-48-3, Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction by binding to a specific portion of an enzyme and thus slowing or preventing a reaction from occurring. 1271-48-3, Name is 1,1′-Ferrocenedicarboxaldehyde, molecular weight is 242.0516. molecular formula is C12H10FeO2. In an Article,once mentioned of 1271-48-3

A series of bismacrocyclic ligands with two ferrocenyl groups, exolendo-1,1?1?1?-[l,2,4,5-tetrakis(5-aza-2-thiahexa-5-enyl) benzene]bisferrocene(exolendo-FeBeFe), 1,1?1?1?-[1,2:1?,2?-tetrakis(5-aza-2-thiahexa-5- enyl)-ethene]bisferrocene(1,2-FeEnFe), 1,1?1?1?-[1,1?:2,2?-tetrakis(5-aza-2-thiahexa-5- enyl)ethene]bisferrocene (1,1-FeEnFe), 1,1?1?1?-[tetrakis(5-aza-2-thiahexa-5-enyl)methane] bisferrocene (FeMeFe), and their dicopper(I) compounds have been synthesized and characterized (electrochemistry, IR, NMR and Moessbauer spectroscopy). The molecular structure of endo-FeBeFe has been determined by X-ray structure analysis and the copper(I)-induced discrimination of the exo- and endo-isomers of FeBeFe has been investigated by 1H NMR spectroscopy. The interaction between copper and iron in the tetranuclear compounds is discussed on the basis of the electrochemical and spectroscopic data.

Bis-macrocyclic ligands with two ferrocenyl end groups, and their tetranuclear dicopper(I) compounds

Therefore, this conceptually novel strategy might open impressive avenues to establish green and sustainable chemistry platforms. In my other articles, you can also check out more blogs about 1271-48-3

Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion