Chemistry is a science major with cience and engineering. The main research directions are preparation and modification of special coatings, and research on the structure and performance of functional materials. In a patent, 1271-48-3, name is 1,1′-Ferrocenedicarboxaldehyde, introducing its new discovery. Safety of 1,1′-Ferrocenedicarboxaldehyde
Nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized at 850 C via a CVD deposition technique by use of three ferrocenyl derivative catalysts, i.e. para-CN, -CF3 and -Cl substituted-phenyl rings. The synthesized catalysts have been characterized by NMR, IR, HR-MS and XRD. The XRD analysis of the para-CF3 catalyst indicates that steric factors influence the X-ray structure of 1,1?-ferrocenylphenyldiacrylonitriles. Acetonitrile or pyridine was used as carbon and nitrogen sources to yield mixtures of N-CNTs and carbon spheres (CS). The N-CNTs obtained from the para-CF3 catalysts, in pyridine, have the highest nitrogen-doping level, show a helical morphology and are less thermally stable compared with those synthesized by use of the para-CN and -Cl as catalyst. This suggests that fluorine heteroatoms enhance nitrogen-doping in N-CNTs and formation of helical-N-CNTs (H-N-CNTs). The para-CF3 and para-Cl catalysts in acetonitrile yielded iron-filled N-CNTs, indicating that halogens promote encapsulation of iron into the cavity of N-CNT. The use of acetonitrile, as carbon and nitrogen source, with the para-CN and -Cl as catalysts also yielded a mixture of N-CNTs and carbon nanofibres (CNFs), with less abundance of CNFs in the products obtained using para-Cl catalysts. However, para-CF3 catalyst in acetonitrile gave N-CNTs as the only shaped carbon nanomaterials.
The prevalence of solvent effects in heterogeneous catalysis in condensed media has motivated developing theoretical assessments of solvent structures and their interactions with reaction intermediates and transition states. Safety of 1,1′-Ferrocenedicarboxaldehyde, you can also check out more blogs about1271-48-3
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion