Application of 1271-48-3, Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction by binding to a specific portion of an enzyme and thus slowing or preventing a reaction from occurring. 1271-48-3, Name is 1,1′-Ferrocenedicarboxaldehyde, molecular weight is 242.0516. molecular formula is C12H10FeO2. In an Patent,once mentioned of 1271-48-3
The invention relates to a double-allyl three-carbon ester ferrocene monomer and its preparation method. In order to 1, 1 ‘- double-(1 – methoxy – 3 – butenyl) ferrocene and 1 – methoxy – 1 – (trimethyl siloxy) – 2 – methyl – 1 – propylene as the raw material, at the low temperature, boron trifluoride ether complex adds by drops three, to obtain 1, 1’ – double-[1 – (1 – methoxy carbo- acid radical – 1 – methyl – ethyl) – 3 – ene butyl] ferrocene compound; diene propyl substituted three-carbon methyl ester ferrocene not only can be used for the melt polycondensation of the polyester, but also has the double bond giving it take part in the polymerization reaction capability of the, therefore is a novel ferrocene base monomer. (by machine translation)
The result showed that such a combination of chemo- and biocatalysis improved the catalytic yield more than two times compared with that of sole metal catalysis. We will look forword to the important role of 1271-48-3, and how the biochemistry of the body works.Application of 1271-48-3
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion