Share a compound : 12582-61-5

12582-61-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12582-61-5 ,Meso-5,10,15,20-Tetraphenyl-21H,23H-porphineironu-oxodimer, other downstream synthetic routes, hurry up and to see

Name is Meso-5,10,15,20-Tetraphenyl-21H,23H-porphineironu-oxodimer, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 12582-61-5, its synthesis route is as follows.

General procedure: To a CH2Cl2 solution (15 mL) of [(TPP)Fe]2(mu-O) (0.033 g, 0.024 mmol) was added trichloroacetic acid (0.010 g, 0.06 mmol). The mixture was stirred for 45 min, during which time the color of the solution changed from green to brown. The solvent was reduced to ?3 mL and hexane (10 mL) was added. The solution was slowly concentrated under reduced pressure until precipitation of the product occurred. The dark brown precipitate was collected by filtration, washed with hexane (2 × 15 mL), and dried in vacuo to give (TPP)Fe(OC(=O)CCl3) (0.020 g, 0.024 mmol, 50% isolated yield).

12582-61-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12582-61-5 ,Meso-5,10,15,20-Tetraphenyl-21H,23H-porphineironu-oxodimer, other downstream synthetic routes, hurry up and to see

Reference:
Article; Xu, Nan; Yan, Beiqi; Awasabisah, Dennis; Powell, Douglas R.; Richter-Addo, George B.; Inorganica Chimica Acta; vol. 469; (2018); p. 183 – 188;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Application of 1,2,3,4-Tetrahydroquinoline-6-carboxylic acid

1271-51-8, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-51-8 ,Vinylferrocene, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Vinylferrocene, and cas is 1271-51-8, its synthesis route is as follows.

Vinylferrocene (1.50 g, 7.07 mmol), 4-iodobenzaldehyde(0.684 g, 2.95 mmol), palladium(II) acetate (0.0331 g,0.147 mmol) and tri-o-tolyl-phosphine (0.224 g, 0.767 mmol) weredissolved in a 1:10 solution (v/v) of triethylamine and acetonitrile (30 ml). The dark red reaction mixturewas stirred under N2 at 82 Cfor 24 h. After cooling, the solvent was removed and resulting redresidue was dissolved in 25 ml DCM and 25 ml water added. Theorganic layer was separated and the aqueous layer washed withDCM (3 25 ml). The organic fractions were combined, stirred overanhydrous MgSO4 and removed by gravity filtration. The filtratewas collected and the solvent removed to give a dark red residue.The product was purified by column chromatography, initially usinga solvent system of 100percent petroleum ether, followed by 50:50mixture of petroleum ether (40-60 C) and DCM. The desiredproduct (1) was isolated as a dark red powder (0.680 g, 73percent). Mp:decomposition without melting, onset at 110 C. 1H NMR(399.951 MHz, CDCl3): d (ppm) 9.97 (s, 1H, CHO), 7.83 (d, 2H,J 8.3 Hz, ArH), 7.56 (d, 2H, J 8.4 Hz, ArH), 7.07 (d, 1H, J 16.1 Hz,HC]CH), 6.73 (d, 1H, J 16.1 Hz, HC]CH), 4.51 (t, 2H, Cp), 4.35 (t,2H, Cp), 4.16 (s, 5H, Cp). 13C{1H} NMR (100.635 MHz, CDCl3):d (ppm) 191.55, 144.07, 134.67, 131.52, 130.32, 126.07, 124.60,82.25, 69.76, 69.38, 67.37. IR (KBr, cm1) n 1693 (C]O), 1630 (C]C). EI-MS: m/z 316 ([M], 100percent). Elemental Analysis forC19H16FeO0.5H2O calculated C, 70.18; H, 5.27, found C, 70.39; H,5.07percent.

1271-51-8, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-51-8 ,Vinylferrocene, other downstream synthetic routes, hurry up and to see

Reference:
Article; Baartzes, Nadia; Stringer, Tameryn; Seldon, Ronnett; Warner, Digby F.; De Kock, Carmen; Smith, Peter J.; Smith, Gregory S.; Journal of Organometallic Chemistry; vol. 809; (2016); p. 79 – 85;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocene

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 102-54-5, Ferrocene

102-54-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocene, cas is 102-54-5,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

In a three-necked flask equipped with a thermometer, 3.72 g (0.02 mol) of ferrocene and 18.86 mL (0.2 mol) of acetic anhydride were added 3.3 mL (0.06 mol) of phosphoric acid was added dropwise with stirring. The temperature was controlled at 55-60C and the TLC point plate was followed to complete conversion of ferrocene. After adding saturated Na2CO3 solution to neutralize to pH=7, the mixture was extracted with methylene chloride (30 mL x 3) and the combined organic phases were washed with water and dried over anhydrous magnesium sulfate. Column separation. 3.86 g of pure acetylferrocene was obtained. Yield : 85%.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 102-54-5, Ferrocene

Reference:
Patent; Zhengzhou University of Light Industry; Yu Shuyan; Zhang Tongyan; Wang Ruijuan; Yin Zhigang; Yang Xuzhao; Lan Hongbing; (13 pag.)CN107383112; (2017); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1271-42-7

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenecarboxylic acid, 1271-42-7

1271-42-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenecarboxylic acid, cas is 1271-42-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Ferrocenecarbonyl chloride was prepared in a schlenk line system to ensure moisture free environment as reported before [21]. In a typical reaction, ferrocene carboxylic acid (10.3601 g, 45.0 mmol) was firstly dried under vacuum at 50 C for 30 min and then dissolved in 75.0 mL of freshly distilled DCM. After that, pyridine(7.20 mL, 90.36 mmol) was added to the previous solution followed by the dropwise addition of oxalyl chloride (7.75 mL, 90.36 mmol) at 25 C. The reaction mixture was stirred for 30 min first at 25 C and then refluxed for 5 h. The contents of the reaction flask were evaporated under vacuum and petroleum ether (80.0 mL) was added. The mixture was stirred for 2 h at 90 C at this stage. At last, the solvent was evaporated to get the dried ferrocene monocarbonyl chloride.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenecarboxylic acid, 1271-42-7

Reference:
Article; Khan, Amin; Wang, Li; Yu, Haojie; Haroon, Muhammad; Ullah, Raja Summe; Nazir, Ahsan; Elshaarani, Tarig; Usman, Muhammad; Fahad, Shah; Naveed, Kaleem-ur-Rehman; Journal of Organometallic Chemistry; vol. 880; (2019); p. 124 – 133;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocene

102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocene, and cas is 102-54-5, its synthesis route is as follows.

To a solution of anhydrous AlCl3 (1.6 g, 12.0 mmol) in CH2Cl2 (20 mL) acetyl chloride (935.8 mg, 12.0 mmol) in CH2Cl2 (10 mL) was added at -5 C. The above mixture was dropwisely added to the solution of ferrocene (1.86 g, 10 mmol) and CH2Cl2 (20 mL) at 0 C and the solution color changed from orange to bluish violet. Then the reaction mixture was warmed to room temperature and stood for 2 h. The mixture was poured to ice-water and the organic phase was successively washed with 1N HCl solution, water and 5% aqueous Na2CO3. The organic layer was dried over anhydrous magnesium sulfate, filtered and the filtrate was concentrated under reduce pressure to give a crude product. The crude product was purified by recrystallization from petroleum ether (60-90 C) to give compound 7a (77.1%).

102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see

Reference:
Article; Chen, Peiqi; Liu, Chunjuan; Hu, Jianfeng; Zhang, Hao; Sun, Ranfeng; Journal of Organometallic Chemistry; vol. 854; (2018); p. 113 – 121;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1,1′-Dibromoferrocene

1293-65-8, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1293-65-8 ,1,1′-Dibromoferrocene, other downstream synthetic routes, hurry up and to see

Name is 1,1′-Dibromoferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1293-65-8, its synthesis route is as follows.

1,1′-Dibromoferrocene (5.1 g,14.8 mmol) was dissolved in 50 mL of thf and cooled to 100 C. nBuLi (6 mL, 14.8 mmol) was slowly added and the reaction mixture left to stir at this temperature for 45 min. Dry [ZnCl2*2thf] (4.2 g, 15.0 mmol) was added in a single portion and the resulting preparation was kept at 0 C for 30 min. Afterward, 2,5-dibromothiophene (0.83 mL, 6.45 mmol) and [Pd(CH2CMe2PtBu2)(mu-Cl)]2 (0.025 g, 36.4 mmol) were added to the solution. The reaction mixture was heated to 55 C and stirred for 36 h at this temperature. After cooling to ambient temperature, the crude product was adsorbed on alumina and purified by column chromatography on alumina, using an n-hexane/toluene mixture of ratio 4:1 (v:v) as eluent. Yield 1.60 g (43%), dark orange solid. Anal.Calcd. for C24H18Br2Fe2S (609.98): C:47.24%; H:2.98%; Found:C:47.16%; H: 2.99%. Mp: 220 C.

1293-65-8, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1293-65-8 ,1,1′-Dibromoferrocene, other downstream synthetic routes, hurry up and to see

Reference:
Article; Van Der Westhuizen, Belinda; Matthaeus Speck; Korb, Marcus; Bezuidenhout, Daniela I.; Lang, Heinrich; Journal of Organometallic Chemistry; vol. 772; (2014); p. 18 – 26;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Application of 1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)ethanone

The chemical industry reduces the impact on the environment during synthesis,12093-10-6,Ferrocenecarboxaldehyde,I believe this compound will play a more active role in future production and life.

12093-10-6, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenecarboxaldehyde, cas is 12093-10-6,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: To a suspension of methyltriphenylphosphonium bromide (1equiv.) in dry THF (100 mL), under nitrogen atmosphere at room temperaturewas added potassium tert-butoxide (7.0 equiv.). The solutionwas stirred for 1 h and then a solution of the aldehyde (1 equiv.) indry THF (30 mL) was added slowly. The mixture was stirred at roomtemperature for 12 h andwas evaporated to dryness. The unreacted potassiumtert-butoxide was quenched with saturated NH4Cl solution(10 mL). The reaction mixture was then extracted with CHCl3(200 mL), washed with water (2 × 200 mL), brine (100 mL) and then dried over anhydrous Na2SO4. Evaporation of the organic layer gave aresidue, which was purified by column chromatography using hexaneas the eluting solvent to give the corresponding vinyl compounds.

The chemical industry reduces the impact on the environment during synthesis,12093-10-6,Ferrocenecarboxaldehyde,I believe this compound will play a more active role in future production and life.

Reference:
Article; Ravivarma, Mahalingam; Kumar, Kaliamurthy Ashok; Rajakumar, Perumal; Pandurangan, Arumugam; Journal of Molecular Liquids; vol. 265; (2018); p. 717 – 726;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Aminoferrocene

1273-82-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1273-82-1 ,Aminoferrocene, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the iron-catalyst compound, Aminoferrocene, cas is 1273-82-1 its synthesis route is as follows.

General procedure: Organometallic sulfonamides were prepared following a modification of the procedure described by Alberto and co-workers [41]. An equimolar amount of pyridine was added at room temperature to a solution containing 50mg of P2 or P3 in 7.0mL of anhydrous CH2Cl2. After 15min, the corresponding sulfonyl chloride derivative was added, and the reaction mixture was heated under reflux for 24h. The resulting solution was dried under vacuum. The crude product was purified using silica gel liquid chromatography and a mixture of CH2Cl2/hexane (4:1) as the eluent. All compounds were recrystallized from an acetone/hexane (1:5) mixture by slow evaporation.

1273-82-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1273-82-1 ,Aminoferrocene, other downstream synthetic routes, hurry up and to see

Reference:
Article; Quintana, Cristobal; Silva, Gisella; Klahn, A. Hugo; Artigas, Vania; Fuentealba, Mauricio; Biot, Christophe; Halloum, Iman; Kremer, Laurent; Novoa, Nestor; Arancibia, Rodrigo; Polyhedron; vol. 134; (2017); p. 166 – 172;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1273-86-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1273-86-5, Ferrocenemethanol

1273-86-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenemethanol, cas is 1273-86-5,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: ferrocenemethanol was added to the substrates 1a-l in a round bottom flask and the mixture was heated under stirring at 50-90C (as reported in Table 1), the reaction was monitored by TLC and capillary electrophoresis, after completion of reaction. The reaction mixture was flash chromatographed by silica gel column to give the pure compounds 3a-l as reported in Table 1. Typical eluent: hexane/ethyl acetate= 7/3.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1273-86-5, Ferrocenemethanol

Reference:
Article; Shisodia, Suresh Udhavrao; Auricchio, Sergio; Citterio, Attilio; Grassi, Marco; Sebastiano, Roberto; Tetrahedron Letters; vol. 55; 4; (2015); p. 869 – 872;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about 102-54-5

102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocene, and cas is 102-54-5, its synthesis route is as follows.

The alcohol 1b was synthesized by acylation offerrocene (Aldrich) with acetic anhydride in presence of BF3Et2O21followed by reduction of the resulting acetylferrocene withNaBH4.22

102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see

Reference:
Article; Trofimov, Boris A.; Oparina, Ludmila A.; Tarasova, Olga A.; Artem’ev, Alexander V.; Kobychev, Vladimir B.; Gatilov, Yuriy V.; Albanov, Alexander I.; Gusarova, Nina K.; Tetrahedron; vol. 70; 35; (2014); p. 5954 – 5960;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion