As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocene, and cas is 102-54-5, its synthesis route is as follows.
DMF (8 mL) and POCl3 (5.6 mL, 60 mmol) were added to a round-bottom two-necked balloon adapted to a reflux condenser, containing ferrocene (2.79 g, 15 mmol) dissolved in chloroform (30 mL) under argon atmosphere and stirred at 0 C during 1.5 h. After addition was complete, the system was heated under reflux for 15 h. After completion, the reaction mixture was cooled to room temperature, poured on a beaker containing 100 mL ice-water mixture, neutralized/basified with aqueous 10% NaOH to pH 8-9 and extracted with ethyl acetate (3 * 50 mL). The organic layer was dried over MgSO4 and filtered. Solvent was then removed under low pressure (rotary evaporator) and 20 mL ethyl acetate was added to the crude product. The solvent was removed again under low pressure and the product was dried under reduced pressure, furnishing 2 as a dark red/brown solid, which was used without purification. Yield: 2.247 g, 70%. 1H NMR (CDCl3, 200 MHz): delta = 9.94 (s, 1 H); 4.78 (br, 2 H); 4.60 (br, 2 H); 4.27 (s, 5 H).
102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see
Reference:
Article; Mayer, Joao C.P.; Sauer, Andre C.; Iglesias, Bernardo A.; Acunha, Thiago V.; Back, Davi F.; Rodrigues, Oscar E.D.; Dornelles, Luciano; Journal of Organometallic Chemistry; vol. 841; (2017); p. 1 – 11;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion