Application of 12093-10-6

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Name is Ferrocenecarboxaldehyde, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 12093-10-6, its synthesis route is as follows.

General procedure: The substituted ketone (3 mmol) and KOH(0.2 g) were dissolved in ethanol (5 mL) in a round bottomedflask and stirred at room temperature (25 C) for 10 min. Anethanolic solution of the substituted aromatic aldehyde (3 mmol,5 mL) was added drop wise and the mixture was stirred at roomtemperature. The progress of the reaction was monitored by TLCon silica gel sheets. The reaction was stopped by neutralizingthe stirred solution with 2 M HCl. In most of the cases the productwas obtained as a dark red precipitate after neutralization. It wasthen removed by filtration, washed with water. In the absence ofa precipitate on neutralization, the solution was extracted withethyl acetate (20 mL × 3). The organic layer was dried overanhydrous sodium sulphate and removed by evaporation underreduced pressure to give a liquid residue. The latter was passedthrough a column of silica gel (230-400 mesh) and eluted withTHF-hexane (1:4) to yield pure compound. All the synthesizedcompounds were well characterized by spectroscopic methodssuch as IR, NMR, Mass and elemental analysis and their spectralcharacteristics were found to be in good general agreement withthose found in literature30.

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Reference:
Article; Mukhtar, Sayeed; Manasreh, Waleed Atef; Parveen, Humaira; Azam, Amir; Asian Journal of Chemistry; vol. 26; 24; (2014); p. 8407 – 8412;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenecarboxaldehyde

The chemical industry reduces the impact on the environment during synthesis,12093-10-6,Ferrocenecarboxaldehyde,I believe this compound will play a more active role in future production and life.

12093-10-6, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenecarboxaldehyde, cas is 12093-10-6,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

(2) Synthesis of ferrocene methanol: ferrocene formaldehyde (10 g, 0.047 muM) dissolved in anhydrous ethyl ether in, and transfer it to the constant pressure in the dropping funnel; in three-neck round bottom flask is added in the tetrahydro (1.8 g, 0 . 047 muM), under the protection of the helium, the ferrocene formaldehyde solution is slowly dripped into stirring in in the tetrahydro solution, then completing after 45 C reflow 2 h, for at the same time thin-layer chromatographic monitoring the reaction; after the reaction, cooling to room temperature, then adding 60 ml ethyl ether, excessive cooling of the tetrahydro adding ethyl acetate and water mixture is removed; separatory funnel for the organic layer is separated out, and washing by water three times (once for each 100 ml water); and organic water-free magnesium sulfate drying 24 h after, for after the Rotavapor distillation under reduced pressure, to obtain yellow powder 7.32 g, yield 97%, melting point 76 – 78 C.

The chemical industry reduces the impact on the environment during synthesis,12093-10-6,Ferrocenecarboxaldehyde,I believe this compound will play a more active role in future production and life.

Reference:
Patent; Shandong Yuangen Petrochemical Co., Ltd.; Qiao Liang; Yuan Junzhou; Song Laigong; He Jingsong; Liu Shanshan; (7 pag.)CN104710482; (2018); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 12093-10-6

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Name is Ferrocenecarboxaldehyde, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 12093-10-6, its synthesis route is as follows.

To a round bottomed flask equipped with a magnetic stirrer bar was added ferrocene carboxaldehyde(535 mg, 2.5 mmol, 1 eq). The flask was then charged with ethanol (4 cm3) and THF (1 cm3). Thered solution was then treated with sodium borohydride (123 mg, 3.2 mmol, 1.3 eq). The flask wasthen sealed and placed under a nitrogen atmosphere. After 30 minutes the solution had changedcolour to an orange and TLC analysis indicated full consumption of the starting material. The flaskwas then concentrated to 90% of original volume in vacuo. The dark orange residue was then takenup in EtOAc (15 cm3) and NaHCO3 (15 cm3). The bi-phasic mixture was transferred to separatingfunnel, the aqueous layer was separated and then back extracted with EtOAc (3 x 5 cm3), thecombined organic washings were then dried over MgSO4, filtered and then concentrated in vacuo togive a yellow solid. The ferrocene methanol was then taken up in 1,3-propanediol (5 cm3), the yellowsolution was then treated with ytterbium (Ill) triflate (77 mg, 0.125 mmol, 5 mol%). The flask wasthen sealed and heated to 100 C. After heating for 10 minutes TLC analysis indicated fullconsumption of the starting material. The flask was cooled to room temperature, diluted with H20(20 cm3) and EtOAc (20 cm3). The organic layer was then separated and the aqueous layer backextracted with EtOAc (3 x 5 cm3). The combined organic layers were then washed with H20 (2018 cm3) and brine (sat) (20 cm3) then dried over MgSO4, filtered then concentrated in vacuo to give an orange solid. Purification was then carried out by silica-gel chromatography eluting with n-Hex 1:1 EtOAc to give the desired product 3-(ferrocenyloxy)propan-lol (1) as an orange powder (514 mg, 74%).?H NIVIR (250 MHz, CDC13); oH: 4.24 (s, 4H), 4.11 (s, 6H), 3.65 (t, 2H, J 5.4 Hz), 3.54 (t, 2HJ=5.4 Hz), 3.65 (t, 2H J = 5.4 Hz), 2.52 (br s, 1H), 1.7 (quin 2H, J = 5.6 Hz); ?3C NIVIR (75 IVIHz, CDC13); Oc: 83.6, 77.3, 71.5, 69.4, 69.3, 69.2, 68.7, 32.0; HRMS (ESI iTOF) calculated for C,4H,8FeO2Na m/z 297.0553 found 297.0560 (m/z + Na); Electrochemical potential: 181 mV.

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Reference:
Patent; ATLAS GENETICS LIMITED; MARSH, Barrie J.; FROST, Christopher G.; SHARP, Jonathan; WO2015/52516; (2015); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Acetylferrocene

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Acetylferrocene, 1271-55-2

1271-55-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Acetylferrocene, cas is 1271-55-2,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: A solution of pure TsNHNH2 (15 mmol) in methanol (30 mL) was stirred and heated to 60 C until the TsNHNH2 dissolved. The mixture was cooled to room temperature. Then a solution of ferrocenylketone (10 mmol) in methanol was dropped into the mixture slowly. After approximately 0.5-2 h, the crude products could be obtained as solid precipitate. The precipitate was washed with petroleum ether then removed in vacuo to give the pure products. In general, the yields were 68-86 %. Because of the relatively low activity of some ketones, their reactions at room temperature may be incomplete. They should be reacted in refluxing methanol. The reaction could be monitored by TLC.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Acetylferrocene, 1271-55-2

Reference:
Article; Ling, Li; Hu, Jianfeng; Huo, Yanhong; Zhang, Hao; Tetrahedron; vol. 73; 1; (2017); p. 86 – 97;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1293-65-8

The chemical industry reduces the impact on the environment during synthesis,1293-65-8,1,1′-Dibromoferrocene,I believe this compound will play a more active role in future production and life.

1293-65-8, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 1,1′-Dibromoferrocene, cas is 1293-65-8,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

120 ml (0.3 mol) of n-BuLi (2.5 M in hexane) are added dropwise at a temperature of <-30C to a solution of 103 g (0.3 mol) of 1 ,1 '-dibromoferrocene in 300 ml of THF. The mixture is stirred further at this temperature for 1.5 hours. The mixture is then cooled to -500C, and 66.2 ml (0.3 mol) of dicyclohexylphosphine chloride are slowly added dropwise at such a rate that the temperature does not rise above -45C. After stirring for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. After adding 150 ml of water, the reaction mixture is extracted by shaking with hexane. The organic phases are dried over sodium sulphate, and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is crystallized in ethanol. The product 13 is obtained with a yield of 84% (yellow solid). 1H NMR (300 MHz, C6D6): delta 1.20-2.11 (m, 22H), 3.97 (m, 2H), 4.23 (m, 2H), 4.26 (m, 2H), 4.41 (m, 2H). 31P NMR (121.5 MHz, C6D6): delta -8.3 (s). The chemical industry reduces the impact on the environment during synthesis,1293-65-8,1,1'-Dibromoferrocene,I believe this compound will play a more active role in future production and life. Reference:
Patent; Solvias AG; WO2007/135179; (2007); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenemethanol

1273-86-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1273-86-5 ,Ferrocenemethanol, other downstream synthetic routes, hurry up and to see

Name is Ferrocenemethanol, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1273-86-5, its synthesis route is as follows.

General procedure: A mixture of aryl alcohol (1 mmol) and [FemDMMerA]Y (100 mg) in solvent(5 mL) was refluxed in oil bath. After completion of the reaction as monitored byTLC, the reaction mixture was filtered to remove insoluble SILP catalyst.Evaporation of solvent in vacuuo followed by column chromatography over silicagel using petroleum ether/ethyl acetate (95:5 v/v) afforded pure aldehydes.

1273-86-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1273-86-5 ,Ferrocenemethanol, other downstream synthetic routes, hurry up and to see

Reference:
Article; Kurane, Rajanikant; Bansode, Prakash; Khanapure, Sharanabasappa; Salunkhe, Rajashri; Rashinkar, Gajanan; Research on Chemical Intermediates; vol. 42; 12; (2016); p. 7807 – 7821;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1273-82-1

1273-82-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1273-82-1 ,Aminoferrocene, other downstream synthetic routes, hurry up and to see

Name is Aminoferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1273-82-1, its synthesis route is as follows.

2) Under the protection of nitrogen, weighing 10 mmol […] [Ph2P (CH2OH)2]+Cl-And 5 mmol amino ferrocene in 100 ml Schlenk bottle, add 20 ml anhydrous methanol stirring, then add 10 mmol triethylamine, the reaction at room temperature, 6 h after sediment generated a large amount of orange, sand core for funnel drying to obtain FcN [CH2P (Ph)2]2Product 2.1 g, yield about 71%;

1273-82-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1273-82-1 ,Aminoferrocene, other downstream synthetic routes, hurry up and to see

Reference:
Patent; Guangxi Normal University; Wang Xiujian; Gui Liucheng; Xie Tingting; Meng Yanfei; Ma Mengxia; Ni Qingling; (12 pag.)CN109796504; (2019); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 12093-10-6

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the iron-catalyst compound, Ferrocenecarboxaldehyde, cas is 12093-10-6 its synthesis route is as follows.

General procedure: A 100mL dry, nitrogen purged round bottom flask was charged with the carbonyl compound in dry tetrahydrofuran. Freshly prepared Cp2TiMe2 in toluene was added. The reaction mixture was heated to 80°C for 10h and was monitored by thin layer chromatography. Insoluble precipitate was separated, the solvent evaporated under reduced pressure, and the residue obtained was purified by column chromatography.

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Reference:
Article; Singh, Jatinder; Ghosh, Sanjib; Deb, Mayukh; Elias, Anil J.; Journal of Organometallic Chemistry; vol. 818; (2016); p. 85 – 91;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1293-65-8

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1,1′-Dibromoferrocene, 1293-65-8

1293-65-8, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 1,1′-Dibromoferrocene, cas is 1293-65-8,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Example 1; L11,1′ bis-[(Sp,Rc,SFe)(1-N,N- Dimethylamino)ethylferrocenyl)phenylphosphino] ferrocene L1To a solution of (R)-N, N-dimethyl-1-ferrocenylethylamine [(R)-Ugi’s amine] (3.09 g, 12 mmol) in Et2O (20 ml) was added 1.5 M t-BuLi solution in pentane(8.0 ml, 12.0 mmol) at -78 0C. After addition was completed, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to -78 0C again, and dichlorophenylphosphine (1.63 ml, 12.0 mmol) was added in one portion. After stirring for 20 min at -78 0C, the mixture was slowly warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to -78 0C again, and a suspension of 1 ,1′ dilithioferrocene [prepared from 1 ,1′ dibromoferrocene(1.72 g, 5.0 mmol) and 1.5 M t-BuLi solution in pentane (14.0 ml, 21.0 mmol) in Et2O (20 ml) at -78 0C] was added slowly via a cannula. The mixture was warmed to room temperature and allowed to stir for 12 h. The reaction was quenched by the addition of saturated NaHCO3 solution (20 ml). The organic EPO layer was separated and dried over MgSO4 and the solvent removed under reduced pressure. The filtrate was concentrated. The residue was purified by chromatography (SiO2, hexane-EtOAc-Et3N = 85:10:5) to afford an orange solid (3.88 g, 85%) as a mixture of 95% his-(Sp,Rc,SFe) title compound L1 and 5% (Rp, Rc, S Fe-S p, Rc, S Fe) meso compound. The meso compound can be removed by further careful purification using chromatography (SiO2, hexane- EtOAc-Et3N = 85:10:5). Orange/yellow crystalline solid m.p. 190-192 0C. [alpha]D = -427 (c=0.005 (g/ml), toluene); 1H NMR (CDCI3, 400.13 MHz): delta 1.14 (d,6H,J = 6.7 Hz), 1.50 (s, 12H); 3.43 (m; 2H); 3.83 (m, 2H); 3.87 (m, 2H); 4.01 (s, 10H), 4.09 (t, 2H, J = 2.4 Hz); 4.11 (m, 2H); 4.20 (m, 2H); 4.28 (m, 2H); 4.61 (m, 2H); 4.42 (d, 2H1 J = 5.3 Hz); 7.18 (m, 6H); 7.42(m, 4H) ppm. 13C NMR (CDCI3, 100.61 MHz): delta 38.28, 57.40 (d, J = 5.6 Hz); 67.02, 69.04 (d, J = 4.0 Hz); 69.16 (d, J = 51.6 Hz); 69.66, 71.60 (d, J = 4.8 Hz), 71.91 (d, J = 7.2 Hz), 72.18 (d, J = 5.6 Hz), 75.96 (d, J = 35.7 Hz), 79.96 (d, J = 6.4 Hz), 95.73 (d, J = 19.1 Hz), 127.32 (d, J = 7.9 Hz), 127.62, 133.12 (d, J = 21.4 Hz), 139.73 (d, J = 4.0 Hz). 31P NMR (CDCI3, 162 MHz): delta -34.88 (s). Found: C, 65.53; H, 5.92; N 3.01 Calculated for C50H54Fe3N2P2; C, 65.81 ; H, 5.97; N, 3.07. HRMS (1OeV, ES+): Calcd for C50H55Fe3N2P2 [M+H]+: 913.1889; Found: 913.1952. The label SP refers to S configuration at phosphorus, Rc refers to R configuration at carbon (or other auxiliary) and Spe refers to S configuration at the planar chiral element.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1,1′-Dibromoferrocene, 1293-65-8

Reference:
Patent; PHOENIX CHEMICALS LTD.; WO2006/75177; (2006); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Application of 1271-51-8

1271-51-8, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-51-8 ,Vinylferrocene, other downstream synthetic routes, hurry up and to see

Name is Vinylferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1271-51-8, its synthesis route is as follows.

A mixture of vinylferrocene (1 mmol), K2CO3 (2.5or 5 mmol), tetrabutylammonium tetrafluoroborat (2.5 or 5 mmol),the given amount of appropriate bromine-substituted compoundand catalytic amount of Pd(OAC)2 in 10 ml DMF was stirred at 80 °Cunder argon atmosphere overnight. After the completion of thereaction, the cooled mixture was filtered, diluted with CH2Cl2(50 ml) and washed with H2O (3 x 50 ml). The organic phase was dried over Na2SO4, filtered and the solvent was removed under thereduce pressure. The crude products were purified by columnchromatography on silica gel with hexane/EtOAC as eluent. Specificdetails for each compound are given below.

1271-51-8, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-51-8 ,Vinylferrocene, other downstream synthetic routes, hurry up and to see

Reference:
Article; Teimuri-Mofrad, Reza; Rahimpour, Keshvar; Ghadari, Rahim; Journal of Organometallic Chemistry; vol. 846; (2017); p. 397 – 406;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion