A new application about 1,1′-Dibromoferrocene

In conclusion, we affirm that quantitative kinetic descriptions of catalytic behavior continue to serve as an indispensable tool.Electric Literature of 1293-65-8. In my other articles, you can also check out more blogs about 1293-65-8

Electric Literature of 1293-65-8, hemistry, like all the natural sciences, begins with the direct observation of nature— in this case, of matter. In a document type is Article, molecular formula is C10Br2Fe, molecular weight is 335.76, and a compound is mentioned, 1293-65-8, 1,1′-Dibromoferrocene, introducing its new discovery.

An efficient system for the catalytic redox isomerization of the allylic alcohol 1-octen-3-ol to 3-octanone is presented. The homogeneous ruthenium(II) catalyst contains a monodentate phosphane ligand with a ferrocene moiety in the backbone and provides 3-octanone in quantitative yields. The activity is increased by nearly 90 % with respect to the corresponding triphenyl phosphane ruthenium(II) complex. By grafting the catalyst at the surface of a dendrimer, the catalytic activity is further increased. By introducing different spacers between ferrocene and phosphorus, the influence on the electronic properties of the complexes is shown by evaluating the electrochemical behavior of the compounds.

In conclusion, we affirm that quantitative kinetic descriptions of catalytic behavior continue to serve as an indispensable tool.Electric Literature of 1293-65-8. In my other articles, you can also check out more blogs about 1293-65-8

Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion