Safety of Ferrocenemethanol, Academic researchers, R&D teams, teachers, students, policy makers and the media all rely on us to share knowledge that is reliable, accurate and cutting-edge. In a document type is Article, and a compound is mentioned, 1273-86-5, name is Ferrocenemethanol, introducing its new discovery.
We report a redox-responsive liposomal system capable of oxidatively triggered disassembly. We describe the synthesis, electrochemical characterization, and incorporation into vesicles of an alternative redox lipid with significantly improved synthetic efficiency and scalability compared to a ferrocene-appended phospholipid previously employed by our group in giant vesicles. The redox-triggered disassembly of both redox lipids is examined in nanosized liposomes as well as the influence of cholesterol mole fraction on liposome disassembly and suitability of various chemical oxidants for in vitro disassembly experiments. Electronic structure density functional theory calculations of membrane-embedded ferrocenes are provided to characterize the role of charge redistribution in the initial stages of the disassembly process.
In the meantime we’ve collected together some recent articles in this area about 1273-86-5 to whet your appetite. Happy reading! Safety of Ferrocenemethanol
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion