As a society publisher, everything we do is to support the scientific community – so you can trust us to always act in your best interests, Application of 1273-86-5, and get your work the international recognition that it deserves. Introducing a new discovery about 1273-86-5, Name is Ferrocenemethanol
Supramolecular encapsulation is known to alter chemical properties of guest molecules. We have applied this strategy of molecular encapsulation to temporally control the catalytic activity of a stable copper(I)?carbene catalyst. Encapsulation of the copper(I)?carbene catalyst by the supramolecular host cucurbit[7]uril (CB[7]) resulted in the complete inactivation of a copper-catalyzed alkyne?azide cycloaddition (CuAAC) reaction. The addition of a chemical signal achieved the near instantaneous activation of the catalyst, by releasing the catalyst from the inhibited CB[7] catalyst complex. To broaden the scope of our on-demand CuAAC reaction, we demonstrated the protein labeling of vinculin with the copper(I)?carbene catalyst, to inhibit its activity by encapsulation with CB[7] and to initiate labeling at any moment by adding a specific signal molecule. Ultimately, this strategy allows for temporal control over copper-catalyzed click chemistry, on small molecules as well as protein targets.
The result showed that such a combination of chemo- and biocatalysis improved the catalytic yield more than two times compared with that of sole metal catalysis. We will look forword to the important role of 1273-86-5, and how the biochemistry of the body works.Application of 1273-86-5
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion