Chemistry involves the study of all things chemical – chemical processes, Safety of 1,1′-Ferrocenedicarboxaldehyde, chemical compositions and chemical manipulation – in order to better understand the way in which materials are structured, how they change and how they react in certain situations. In a patent,Which mentioned a new discovery about 1271-48-3
The bitopic ligand 1,1?-bis(dipyrazol-1-ylmethyl)ferrocene, Fe[C 5H4CH(pz)2]2 (1; pz = pyrazolyl ring), has been prepared by the reaction of 1,1?-ferrocenedicarbaldehyde and 1,1?-carbonyldipyrazole. In the solid state, the bis(pyrazolyl) methane moieties are in an antiperiplanar eclipsed orientation. The molecules are organized into a three-dimensional array by pi…pi, weak C-H-…N hydrogen bonding, and C-H…pi interactions. The reactions between 1 and AgBF4, AgPF6, AgSO3CF 3, or AgSbF6 yield {Fe[C5H 4CH(pz)2]2AgBF4}n (2), {Fe[C5H4CH(pz)2]2AgPF 6}n (3), {Fe[C5H4CH(Pz) 2]2AgSO3CF3}n (4), and {Fe[C5H4CH(pz2]2AgSbF 6}n (5), respectively. The solid-state structures consist of coordination polymers with compounds 2 and 3 arranged in helical chains, while the chains in 3·1/2Et2O, 4·1.5C6H 6,5·1/2Et2Et2O, and 5·1/2C 6H6 are nonhelical. In these structures, the ferrocenyl groups adopt a similar orientation, where the angle between CH(pz)2 groups is confined to the range of 85-99 and the silver pyrazolyl coordination spheres are also in very similar distorted-tetrahedral arrangements. Both structural types form three-dimensional supramolecular structures organized by weak hydrogen bonds, pi…pi stacking, and CH…pi interactions. In the helical form, the anions reside in the pockets formed by the close-packed chains, whereas in the nonhelical form, sizable channels, which contain the solvent molecules and the anions, are located between the chains.
We very much hope you enjoy reading the articles and that you will join us to present your own research about 1271-48-3, you can contact me at any time and look forward to more communication. Safety of 1,1′-Ferrocenedicarboxaldehyde
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion