As a society publisher, everything we do is to support the scientific community – so you can trust us to always act in your best interests, Electric Literature of 1273-86-5, and get your work the international recognition that it deserves. Introducing a new discovery about 1273-86-5, Name is Ferrocenemethanol
A dual-responsive supramolecular network based on pillar[6]arene-ferrocenium redox-controllable recognition motifs in polymeric backbones is constructed with a ferrocenium-functionalized copolymer and a pillar[6]arene copolymer, in which the first example of pillar[6]arene-functionalized copolymer was synthesized through the reversible addition/fragmentation chain-transfer copolymerization of an acrylate-functionalized pillar[6]arene and methyl acrylate. The resulting supramolecular network exhibits dramatically increased viscosity than the non-cross-linked mixtures and demonstrates a gel-like behavior on macroscale with a transient-network behavior revealed by rheology study. Furthermore, the viscoelastic properties of such supramolecular network can be easily controlled by different external stimuli including redox stimulus and competing host/guest reagents.
Future efforts will undeniably focus on the diversification of the new catalytic transformations. We’ll also look at important developments of the role of 1273-86-5, and how the biochemistry of the body works.Electric Literature of 1273-86-5
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion