The Best Chemistry compound: Ferrocenemethanol

You can also check out more blogs about1273-94-5 and wish help many people in the next few years. .category: iron-catalyst

category: iron-catalyst, Academic researchers, R&D teams, teachers, students, policy makers and the media all rely on us to share knowledge that is reliable, accurate and cutting-edge. In a document type is Article, and a compound is mentioned, 1273-86-5, name is Ferrocenemethanol, introducing its new discovery.

An improved synthesis of diethyl ferrocenylphosphonate using the tBuLi/tBuOK system at low temperature is reported and the structure of [FcPO3Et2]2 ·ZnCl2complex is described. The electrochemical behaviour of FcP(O)(OEt)2, 1,1?-fc[P(O)(OEt) 2]2, FcCH2P(O)(OEt)2, and their corresponding acids were compared. Each of them shows a reversible one-electron transfer reaction. Ferrocenylbisphosphonate is more difficult to oxidize than ferrocenylphosphonate due to the presence of two electron-withdrawing substituents. A methylene spacer between the ferrocenyl unit and the phosphonate group renders the compound easier to oxidize. The acids are easier to oxidize than the esters, and their salts, in which the phosphonate group behave as an electron-donating group, are even easier to oxidize than the ferrocene. The ferrocenylphosphonic acid may be, then, considered as a redox-active pH responsive molecule. Elsevier B.V. All rights reserved.

You can also check out more blogs about1273-94-5 and wish help many people in the next few years. .category: iron-catalyst

Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion