Electric Literature of 1271-48-3, Academic researchers, R&D teams, teachers, students, policy makers and the media all rely on us to share knowledge that is reliable, accurate and cutting-edge. In a document type is Article, and a compound is mentioned, 1271-48-3, name is 1,1′-Ferrocenedicarboxaldehyde, introducing its new discovery.
Lithioferrocene, 1,1′-dilithioferrocene, lithioruthenocene and 1,1′-dilithioruthenocene all react with N,N-dimethylformamide in diethyl ether to produce the respective aldehydes.The lithiation of the two metallocenes can be steered to maximize the formation of only one of the two aldehydes by choosing either n-butyllithium in the presence of tetramethylethylenediamine (TMEDA) or t-butyllithium (tBuLi) as the metallating reagent: ferrocene mono-aldehydes or 1,1′-dialdehydes are formed with good yields (91percent and 85percent respectively, based on ferrocene), lower yields (50percent) of ruthenocene-1,1′-dialdehyde were obtained under the standard conditions, because the 1,3,1′-trialdehyde also formed in significant (19percent) amounts.Monolithiation by nBuLi and the formation of the ruthenocene monoaldehyde (yield, 66percent) are favoured when TMEDA is used in only catalytic amounts; lithiation of ruthenocene by tBuLi selectively leads to monolithioruthenocene and the mono-aldehyde (yield, 91percent).The products are easily purified by column chromatography.The simplicity and the high yield of these reactions make them much more desirable than the previously known multistep procedures.
This is the end of this tutorial post, and I hope it has helped your research about 1271-48-3, you can contact me at any time and look forward to more communication. Electric Literature of 1271-48-3
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion