Discover the magic of the 1273-86-5

The prevalence of solvent effects in heterogeneous catalysis in condensed media has motivated developing theoretical assessments of solvent structures and their interactions with reaction intermediates and transition states. Product Details of 1273-86-5, You can get involved in discussing the latest developments in this exciting area about 1273-86-5

Product Details of 1273-86-5, Academic researchers, R&D teams, teachers, students, policy makers and the media all rely on us to share knowledge that is reliable, accurate and cutting-edge. In a document type is Article, and a compound is mentioned, 1273-86-5, name is Ferrocenemethanol, introducing its new discovery.

Ferrocenylmethanol acrylate (FcMA)-immobilized polystyrene latex particles were synthesized by copolymerizing FcMA and styrene in the presence of polystyrene latex suspensions with eight different diameters ranging from 0.084 to 1.7 mum. The amounts of the ferrocenyl moiety loaded on one particle were proportional to the radii, a. The proportionality suggests the uniform distribution of the ferrocenyl moiety over the particle, of which concentration was 0.18 M. The aqueous suspensions, which were stable in the presence of a surfactant, exhibited reversible voltammetric waves for the ferrocenyl moiety. The peak current was controlled by diffusion of the latex particles. The efficiency of the reaction was obtained from the ratio of the observed current to the theoretical one which was estimated from the number of the ferrocenyl moieties and the diffusion coefficient of the particle by the Stokes-Einstein relation. The ratio was proportional to a-0.47, whereas it might be a0 for an ideal particle without any size effect. This relation was explained in terms of the contribution of rotational diffusion of redox particles.

The prevalence of solvent effects in heterogeneous catalysis in condensed media has motivated developing theoretical assessments of solvent structures and their interactions with reaction intermediates and transition states. Product Details of 1273-86-5, You can get involved in discussing the latest developments in this exciting area about 1273-86-5

Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion