Chemical engineers ensure the efficiency and safety of chemical processes, adapt the chemical make-up of products to meet environmental or economic needs, and apply new technologies to improve existing processes. Electric Literature of 1273-86-5. Catalysts allow a reaction to proceed via a pathway that has a lower activation energy than the uncatalyzed reaction. Introducing a new discovery about 1273-86-5, Name is Ferrocenemethanol
A direct synthesis of alpha-alkylated arylacetamides from arylacetonitriles and primary alcohols has been accomplished for the first time. In the presence of the rhodium complex [Rh(cod)Cl]2/triphenylphosphine/potassium hydroxide system, the desired alpha-alkylated arylacetamides were obtained in 74-92% yield under microwave conditions. The experimental results in this paper are in sharp contrast with previous reports, where the coupling of arylacetonitriles and primary alcohols produced the alpha-alkylated arylacetonitriles. Mechanistic investigations show that arylacetonitriles are first alpha-alkylated with primary alcohols to produce alpha-alkylated arylacetonitriles, which are further hydrated with the water resulting from the alpha-alkylation step to produce alpha-alkylated arylacetamides. More importantly, this research shows the potential of developing completely atom-economical reactions that involve the hydrogen autotransfer (or hydrogen borrowing) process.
In the meantime we’ve collected together some recent articles in this area about 1273-86-5 to whet your appetite. Happy reading! Electric Literature of 1273-86-5
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion