Chemical engineers ensure the efficiency and safety of chemical processes, adapt the chemical make-up of products to meet environmental or economic needs, and apply new technologies to improve existing processes. Electric Literature of 1293-65-8. Catalysts allow a reaction to proceed via a pathway that has a lower activation energy than the uncatalyzed reaction. Introducing a new discovery about 1293-65-8, Name is 1,1′-Dibromoferrocene
We report that Mn(IV)-oxo porphyrin complexes, MnIV(O)(TMP) (1) and MnIV(O)(TDCPP) (2), are capable of activating the C-H bonds of hydrocarbons, including unactivated alkanes such as cyclohexane, via an oxygen non-rebound mechanism. Interestingly, 1 with an electron-rich porphyrin is more reactive than 2 with an electron-deficient porphyrin at a high temperature (e.g., 0 C). However, at a low temperature (e.g., -40 C), the reactivity of 1 and 2 is reversed, showing that 2 is more reactive than 1. To the best of our knowledge, the present study reports the first example of highly reactive Mn(IV)-oxo porphyrins and their temperature-dependent reactivity in C-H bond activation reactions.
We very much hope you enjoy reading the articles and that you will join us to present your own research about 1293-65-8, you can contact me at any time and look forward to more communication. Electric Literature of 1293-65-8
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion