As a society publisher, everything we do is to support the scientific community – so you can trust us to always act in your best interests, Synthetic Route of 1273-86-5, and get your work the international recognition that it deserves. Introducing a new discovery about 1273-86-5, Name is Ferrocenemethanol
The ion-pairing effect was investigated based on the substituent effect of ferrocene (Fc) derivatives using cyclic voltammetry. It was shown that the presence of ion-pairing strongly affected the electrochemical redox behavior in the organic solvent. The formal redox potential (E0?, the average of anodic and cathodic peak potential) shifted negatively with the increasing ion-pairing effect. That was because the formation of ion pair (Fc+·ClO4-) was beneficial to equilibrium shift from Fc to Fc+ in thermodynamics. In this work, electron-donating and electron-withdrawing substituents of ferrocene derivatives were employed for a deep study of ion-pairing effect, respectively. It is confirmed that both ion-pairing effect and electron-donating substituent effect facilitated the negative shift of E0? for ferrocene derivatives, showing the positive cooperativity. While the electron-withdrawing substituent effect resulted in the positive shift of E0? for ferrocene derivatives and was unfavorable for the oxidation of Fc derivatives, reflecting the negative cooperativity with ion-pairing effect. In addition, the reversal phenomenon of weak electron-withdrawing substituent was revealed when the ion-pairing effect was stronger than the electron-withdrawing substituent effect, indicating that the ion-pairing function has a significant effect on electrochemical behavior of ferrocene derivatives.
Therefore, this conceptually novel strategy might open impressive avenues to establish green and sustainable chemistry platforms. In my other articles, you can also check out more blogs about 1273-86-5
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion