Synthetic Route of 1273-86-5, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Article, and a compound is mentioned, 1273-86-5, Ferrocenemethanol, introducing its new discovery.
Oxygen Reduction at Carbon-Supported Lanthanides: TheRole of the B-Site
The kinetics of the oxygen reduction reaction (ORR) at carbon-supported transition-metal oxides in alkaline solutions is systematically investigated as a function of the nature of the B-site. The study is focused on LaBO3 (B=Cr, Co, Fe, Mn and Ni) nanoparticles synthesized by using an ionic-liquid route, offering fine control over phase purity and composition. Activity towards the ORR was compared with the commercial Pt/Etek catalyst. Detailed electrochemical analysis employing a rotating ring-disk electrode provides conclusive evidence that the carbon support plays an important contribution in the faradaic responses. Decoupling the contribution of the carbon support uncovers that the reactivity of LaMnO3 towards the four-electron ORR pathway is orders of magnitude higher than that for the other lanthanides. We rationalize these observations in terms of changes in the redox state at the B-site close to the formal oxygen reduction potential.
Oxygen Reduction at Carbon-Supported Lanthanides: TheRole of the B-Site
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Synthetic Route of 1273-86-5. In my other articles, you can also check out more blogs about 1273-86-5
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion