Electric Literature of 1271-51-8, Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.1271-51-8, Name is Vinylferrocene, molecular formula is C12H3Fe. In a article£¬once mentioned of 1271-51-8
alpha-ferrocenylalkylation of 1,5-disubstituted tetrazoles and certain transformations of reaction products
The reaction of alpha-hydroxyferrocenylalkyl derivatives and vinylferrocene with 1,5-disubstituted tetrazoles in methylene chloride-aqueous acid HX (X = BF4, ClO4) two-phase systems gives a mixture of 1,3,5- and 1,4,5-trisubstituted tetrazolium salts, the fraction of the 1,3,5-isomers prevailing. The synthesized salts are readily dealkylated under the action of bases to give the above starting compounds. Heating of 3(4)-(ferrocenylmethylene)-1,5-pentamethylenetetrazolium and 3(4)-(ferrocenylmethylene)-2-methyl-1-phenyltetrazolium tetrafluoroborates in anhydrous methanol or ethanol in the presence of catalytic amounts of alkali gives rise to ferrocenylcarbinol ethers. Other nuclephiles (pyridine, triphenylphosphine, sodium thiocyanate, sodium p-toluenesulfinate, dibenzoylmethane) also react with the above tetrazolium salts, forming ferrocenylmethylation products. Heating of equimolar amounts of 3(4)-(ferrocenylmethylene)-1,5-pentamethylenetetrazolium or 3(4)- (ferrocenylmethylene)-2-methyl-1-phenyltetrazolium perchlorates with mercury(II) perchlorates in anhydrous ethanol results in mercuration of the starting tetrazolium salts, involving hydrogen substitution in the methylene or methyl groups bound to tetrazolium carbon atoms. The condensation of the same salts with p-N,N-(dimethylamino)nitrosobenzene, leading to azomethine formation, occurs under similar conditions.
alpha-ferrocenylalkylation of 1,5-disubstituted tetrazoles and certain transformations of reaction products
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1271-51-8
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion