Electric Literature of 1271-48-3, Catalysts function by providing an alternate reaction mechanism that has a lower activation energy than would be found in the absence of the catalyst. In some cases, the catalyzed mechanism may include additional steps.In a article, 1271-48-3, molcular formula is C12H10FeO2, introducing its new discovery.
Structural influences on the electrochemistry of 1,10-di(hydroxyalkyl) ferrocenes. Structure of [Fe{h5-C5H4eCH(OH)e(CH2)3OH}2]
Abstract A series of 1,1′-di(hydroxyalkyl)ferrocenes, [Fc'{(CH 2)nOH}2], with n = 1 (1), 2 (2), 3 (3) and 4 (4) and Fc’ = Fe(eta5-C5H4)2, was synthesized. The electrochemistry of the di(hydroxyalkyl)ferrocenes was studied by cyclic voltammetry in CH2Cl2/0.1 M [N nBu4][PF6] utilizing a glassy carbon working electrode. The ferrocenyl group showed reversible electrochemistry with the formal reduction potential, Eo’ , inversely proportional to alkyl chain length and approximately 59 mV smaller than those of the corresponding mono(hydroxyalkyl)ferrocenes derivatives [Fc(CH2)mOH] with m = 1 (1m), 2 (2m), 3 (3m), and 4 (4m) and Fc = Fe(eta5-C 5H5)(eta5-C5H4 -). The tetraalcohol [Fc'{CH(OH)(CH2)3OH} 2], 5, possessing four OH functionalities, two in the terminal positions and two more, one on each of the two alpha-C relative to the ferrocenyl (Fc’ for dialcohols or Fc for monosubstituted derivatives) group, was isolated as a side product during the synthesis of 4. The formal reduction potential of 5 was Eo’ = -24 mV vs. FcH/FcH+ and closely approached Eo’ of [FcCH(OH)CH3] (Eo’ = -11 mV), [Fc'{CH(OH)CH3}2] (-21 mV) and 1 (0.00 mV vs. FcH/ FcH+). The single crystal X-ray structure of the tetraalcohol 5 (Z = 8, orthorhombic, space group Pbca) was also solved.
Structural influences on the electrochemistry of 1,10-di(hydroxyalkyl) ferrocenes. Structure of [Fe{h5-C5H4eCH(OH)e(CH2)3OH}2]
The proportionality constant is the rate constant for the particular unimolecular reaction. the reaction rate is directly proportional to the concentration of the reactant. I hope my blog about 1271-48-3 is helpful to your research. Electric Literature of 1271-48-3
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion