Related Products of 1273-86-5, Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.1273-86-5, Name is Ferrocenemethanol, molecular formula is C11H3FeO. In a article£¬once mentioned of 1273-86-5
Nanoscale polypyrrole sensors for near-field electrochemical measurements
Scanning electrochemical microscopy (SECM) is an electrochemical technique that is used to measure redox activity local to the surface of a sample. The incorporation of shear force (SF) feedback into SECM enables the concurrent acquisition of topographical data. Contemporary SECM measurements require a redox mediator (such as ferrocene methanol (FcMeOH)) for electrochemical measurements; however, redox mediators are detrimental to chemically sensitive materials such as biological cells. In this article, nanoscale polypyrrole membranes doped with dodecylbenzene sulfonate (PPy(DBS)) are deposited at the tip of highly sensitive ultra-microelectrodes (UME) to demonstrate a novel modification of the contemporary SECM?SF imaging technique that operates in the absence of a redox mediator. This technique leverages the redox activity of a PPy(DBS) membrane to locally detect changes in cation concentration. In conjunction with SF imaging, the PPy(DBS) membrane can (i) detect changes in distance from the surface by measuring changes in ion concentration of the diffusion shell, or (ii) detect local cation flux due to cell function when kept at a constant distance from the cell surface through SF-imaging techniques. Therefore, we predict this technique to enable high resolution mapping of surface cation concentrations and impact the field of biological imaging.
Nanoscale polypyrrole sensors for near-field electrochemical measurements
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1273-86-5
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion