Chemistry is a science major with cience and engineering. The main research directions are preparation and modification of special coatings, and research on the structure and performance of functional materials. In a patent, 1293-65-8, name is 1,1′-Dibromoferrocene, introducing its new discovery. Computed Properties of C10Br2Fe
Reaction of l,l’,3,3′-tetra(tert-amyl)benzobis(imidazolylidene) (1) with 2 equiv of FcN3 or FcNCS afforded bisadducts [(FcN3) 2(1)] (2) or [(FcNCS)2(1)] (3), respectively (Fc = ferrocene). To the best of our knowledge, these represent the first examples of complexes comprising metals indirectly connected to the carbene atoms of N-heterocyclic carbenes (NHCs) via their ligand sets. Cyclic and differential pulse voltammetry indicated that bis(NHC) 1 facilitated significant electronic coupling between ferrocene centers in 2 (DeltaE = 140 mV), but not in 3. We believe the different degrees of electronic interaction are due to geometric factors: the triazene linker in 2 is nearly coplanar with the bis(NHC) scaffold, whereas the isothiocyanate linker is orthogonal, as determined by X-ray crystallography. Employing this “indirect connection” strategy should enable tuning of metalmetal interactions by simple alteration the organic linker between NHC and MLn fragments rather than complete redesign thereof. Given that NHC-reactive azide or isothiocyanate groups can be incorporated into both organic and inorganic compounds, this approach is envisioned to facilitate access to otherwise inaccessible catalysts and materials.
Indirectly connected bis(N-Heterocyclic Carbene) bimetallic complexes: Dependence of metal-metal electronic coupling on linker geometry
The prevalence of solvent effects in heterogeneous catalysis in condensed media has motivated developing theoretical assessments of solvent structures and their interactions with reaction intermediates and transition states. Computed Properties of C10Br2Fe, you can also check out more blogs about1293-65-8
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion