Reference of 16009-13-5, Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. 16009-13-5, Name is Hemin, molecular weight is 651.94. In an Article,once mentioned of 16009-13-5
Resonance Raman spectra of beta-hematin and hemin are reported for a range of excitation wavelengths including 406, 488, 514, 568, 633, 780, 830, and 1064 nm. Dramatic enhancement of A1g modes (1570, 1371, 795, 677, and 344 cm-1), ring breathing modes (850-650 cm-1), and out-of-plane modes including iron-ligand modes (400-200 cm-1) were observed when irradiating with 780- and 830-nm laser excitation wavelengths for beta-hematin and to a lesser extent hemin. Absorbance spectra recorded during the transformation of hemin to beta-hematin showed a red-shift of the Soret and Q (0-1) bands, which has been interpreted as excitonic coupling resulting from porphyrin aggregation. A small broad electronic transition observed at 867 nm was assigned to a z-polarized charge-transfer transition dxy ? eg(pi*). The extraordinary band enhancement observed when exciting with near-infrared excitation wavelengths in beta-hematin when compared to hemin is explained in terms of an aggregated enhanced Raman scattering hypothesis based on the intermolecular excitonic interactions between porphyrinic units. This study provides new insight into the electronic structure of beta-hematin and therefore hemozoin (malaria pigment). The results have important implications in the design and testing of new anti-malaria drugs that specifically interfere with hemozoin formation.
Resonance raman spectroscopy reveals new insight into the electronic structure of beta-hematin and malaria pigment
Therefore, this conceptually novel strategy might open impressive avenues to establish green and sustainable chemistry platforms. In my other articles, you can also check out more blogs about 16009-13-5
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion